Détermination prénatale du génotype \textit{RHD} fœtal à partir du sang maternel

Janvier 2011

Service évaluation des actes professionnels
Détermination prénatale du génotype RHD fœtal à partir du sang maternel – Rapport d’évaluation

Ce rapport d’évaluation technologique est téléchargeable sur
www.has-sante.fr

Haute Autorité de Santé
Service documentation – information des publics
2, avenue du Stade de France - F 93218 Saint-Denis La Plaine CEDEX
Tél. : +33 (0)1 55 93 70 00 - Fax : +33 (0)1 55 93 74 00

Ce document a été validé par le Collège de la Haute Autorité de Santé en janvier 2011.
ÉQUIPE

Ce rapport a été réalisé par Mᵐᵉ le Dʳ Marie Victoire SENAT et M. le Pʳ Hervé FERNANDEZ, gynécologues obstétriciens, en coordination avec Mᵐᵉ le Dʳ Michèle MORIN-SURROCA, docteur en médecine, chef de projet au Service évaluation des actes professionnels, sous la responsabilité de Mᵐᵉ le Dʳ Sun Hae LEE ROBIN, chef de service.

La recherche documentaire a été effectuée par Mᵐᵉ Mireille CECCHIN, documentaliste, avec l’aide de Mᵐᵉ Sylvie LASCOLS sous la responsabilité de Mᵐᵉ Christine DEVAUD, adjointe au chef de service et de Mᵐᵉ le Dʳ Frédérique PAGÈS, docteur ès sciences, chef de service.

L’organisation logistique et le travail de secrétariat ont été réalisés par Mᵐᵉ Louise Antoinette TUIL.

Pour tout contact au sujet de ce rapport :
Tél. : 01 55 93 71 12
Fax : 01 55 93 74 35
Courriel : contact.seap@has-sante.fr
TABLE DES MATIÈRES

ÉQUIPE ... 3
LISTE DES ABRÉVIATIONS ... 6
INTRODUCTION ... 8
CONTEXTE ... 9
I. RAPPELS PHYSIOPATHOLOGIQUES ... 9
I.1 GÉNÉRALITÉS SUR LE SYSTÈME DE GROUPE SANGUIN RH 9
 I.1.1 Bases moléculaires contribuant à un phénotype RH: -1 (D négatif) 10
 I.1.2 Bases moléculaires des variants RHD contribuant à un phénotype RH:1 (D positif) 11
II. PRINCIPE DE LA DÉTERMINATION PRÉNATALE DU RHÉSUS FŒTAL D SUR
 SANG MATERNEL ... 13
II.1 L’ADN FŒTAL « LIBRE » CIRCULANT (CELL-FREE CIRCULATING FETAL DNA) ... 13
II.2 MODALITÉS DE RÉALISATION DE LA PCR .. 14
III. L’ALLO-IMMUNISATION FŒTO-MATERNELLE – STRATÉGIES DIAGNOSTIQUES
 ET THÉRAPEUTIQUES ACTUELLES ... 16
IV. ASPECTS RÈGLEMENTAIRES ... 18
IV.1 EXAMENS MÉDICAUX OBLIGATOIRES DURANT LA GROSSESSE 18
IV.2 DIAGNOSTIC PRÉNATAL ... 19
V. CONDITIONS ACTUELLES DE LA PRISE EN CHARGE PAR L’ASSURANCE
 MALADIE .. 19
VI. IDENTIFICATION DANS LES NOMENCLATURES ÉTRANGÈRES 19
MÉTHODE D’ÉVALUATION .. 20
I. RECHERCHE DOCUMENTAIRE .. 20
I.1 MÉTHODE .. 20
I.2 RÉSULTATS ... 20
II. GROUPE DE TRAVAIL ... 20
II.1 CONSTITUTION ET COMPOSITION .. 20
II.2 RECUEIL DE LA POSITION DU GROUPE ... 21
RÉSULTATS DE L’ÉVALUATION ... 22
I. ANALYSE DES DONNÉES DE LA LITTÉRATURE ... 22
I.1 DESCRIPTION DE LA TECHNIQUE DE LA DÉTERMINATION PRÉNATALE DU GÉNOTYPE RHD FŒTAL À PARTIR DU SANG MATERNEL ... 22
 I.1.1 Présentation des techniques de PCR ... 22
 I.1.2 Examen de référence .. 29
 I.1.3 Standardisation de la technique et modalités d’interprétation des résultats 29
I.2 RÉSULTATS DES TESTS .. 31
 I.2.1 Performance diagnostique ... 31
 I.2.2 Résultats des études pour le 1er trimestre 41
 I.2.3 Validité des résultats .. 44
I.3 UTILISATION EN PRATIQUE CLINIQUE .. 44
I.4 CONCLUSION DE L’ANALYSE DE LA LITTÉRATURE 46
II. POSITION DU GROUPE DE TRAVAIL ... 47
II.1 CONTEXTE .. 47
II.2 ANALYSE DES DONNÉES PUBLIÉES .. 48
II.3 POSITION POUR LA PRATIQUE CLINIQUE ... 48
II.4 ASPECTS ORGANISATIONNELS .. 50
III. CONCLUSION ... 50
ANNEXES .. 52
I. MÉTHODE GÉNÉRALE D’ÉLABORATION D’UN RAPPORT D’ÉVALUATION D’UNE TECHNOLOGIE DE SANTÉ .. 52
II. RECHERCHE DOCUMENTAIRE .. 53
II.1 BASES DE DONNÉES BIBLIOGRAPHIQUES .. 53
II.2 AUTRES SOURCES CONSULTÉES ... 58
III. GROUPE DE TRAVAIL .. 59
III.1 CONSTITUTION ... 59
III.2 COMPOSITION .. 59
III.3 DÉCLARATIONS D’INTÉRÊTS .. 60
III.4 RECUEIL DE LA POSITION ARGUMENTÉE DU GROUPE ... 60
IV. RÈGLEMENTATION CONCERNANT LE DIAGNOSTIC PRÉNATAL (AGENCE DE LA BIOMÉDECINE) .. 60
V. PRÉSENTATION DES ÉTUDES PUBLIÉES .. 63
V.1 TABLEAU DE PRÉSENTATION DES ÉTUDES .. 63
RÉFÉRENCES BIBLIOGRAPHIQUES .. 70
LISTE DES ABRÉVIATIONS

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Definition/Ex.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cffDNA</td>
<td>(cell free fetal DNA) : ADN fœtal libre circulant</td>
</tr>
<tr>
<td>FN</td>
<td>Faux négatif</td>
</tr>
<tr>
<td>FP</td>
<td>Faux positif</td>
</tr>
<tr>
<td>GBEA</td>
<td>Guide de bonne exécution des analyses de biologie médicale</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction (réaction en chaine de la polymérase)</td>
</tr>
<tr>
<td>SA</td>
<td>Semaine d'aménorrhée</td>
</tr>
<tr>
<td>SRY</td>
<td>Sex determining Region of Y chromosome</td>
</tr>
</tbody>
</table>
LEXIQUE

Epitope : déterminant antigénique (« Dictionnaire de médecine », Flammarion, 7e édition).

Exons : dans les gènes dont la structure est faite de pièces juxtaposées, partie de l'ADN qui code pour un fragment du message, ce qui l'oppose à l'intron, fraction d'ADN non codante (« Dictionnaire de médecine », Flammarion, 7e édition).

Intron : segment d'ADN intercalaire, présent dans les gènes dont la structure est faite de pièces juxtaposées, qui interrompt la continuité du message, dont la fonction n'est pas connue (« Dictionnaire de médecine », Flammarion, 7e édition).

RHD : gène Rhésus D.

RH1 : antigène D.

RH:1 : phénotype rhésus D positif.

RH:-1 : phénotype rhésus D négatif.

RH :P1 : phénotype rhésus D partiel.

RH:W1 : phénotype rhésus D faible.

RHD ψ' : pseudogène rhésus psi.

INTRODUCTION

L'allo-immunisation fœto-maternelle se caractérise par la production d'anticorps maternels dirigés contre les éléments figurés du sang fœtal : hématies ou plaquettes. Le facteur étiologique essentiel en dehors de la transfusion, est le passage de sang fœtal dans la circulation maternelle lors de différentes situations à risque. L'allo-immunisation peut être à l'origine, lors de la grossesse suivante, d'anémies fœtales et néonatales sévères ainsi que d'ictères néonatals graves dus au passage des anticorps de la mère immunisée dans le sang fœtal via le placenta.

Le système RH (anciennement dénommé rhesus) est à l'origine de la majorité des allo-immunisations fœto-maternelles, et les anticorps anti-RH1 (anti D) sont les plus impliqués et se développent chez des femmes RH:-1 (D négatif). Le risque d'allo-immunisation existe si le fœtus est RH:1 (D positif). Le risque d'anémie et d'ictère existe lors de la grossesse suivante, pour le fœtus s'il est également RH:1 (D positif).

L'identification d’ADN fœtal circulant dans le sang maternel, le clonage et séquençage des gènes RH (rhesus) ont permis d'envisager de déterminer le génotype fœtal RHD (rhesus D) à partir du sang maternel.

Ainsi, dans le cas de mère de phénotype RH:-1 (D négative) et de père de phénotype RH:1 (rhesus D positif), la connaissance du génotype RHD (rhesus D) du fœtus permettrait :

1) chez les mères déjà immunisées, d'identifier les grossesses devant faire l'objet d'un suivi spécifique spécialisé lourd si le fœtus est RH:1 (D positif) en raison du risque d'anémie fœtale. Dans le cas contraire : fœtus RH:-1 (D négatif), la grossesse suit le protocole de surveillance habituel ;

2) chez les mères non immunisées, d'identifier les grossesses devant faire l'objet d'une prophylaxie, si le fœtus est RH:1 (D positif) par immunoglobulines anti-RH1 (anti-D), produits dérivés du sang dont la disponibilité est limitée et dont les risques de transmission d'agents infectieux transmissibles par le sang bien que très rares ne peuvent être exclus.

Le champ de l’évaluation porte sur la détermination de la performance diagnostique de la détermination prénatale du RH1 fœtal (rhesus D) à partir du sang maternel et de ses indications.

1 Selon le Collège national des gynécologues et obstétriciens français (CNGOF).

Au premier trimestre : fausses couches spontanées ou menace de fausses couches spontanées, interruption de grossesse, grossesse molaire, grossesse extra-utérine, métrorragies, choriocentèse, amniocentèse, réduction embryonnaire, traumatisme abdominal.

Au 2e et 3e trimestre :

- risque important : interruption médicale de grossesse, fausse couche spontanée tardive, mort fœtale in utero, version par manœuvre externe, traumatisme abdominal ou pelvien, intervention chirurgicale abdominale ou pelvienne, prélèvement ovaire, accouchement ;
- risque modéré : métrorragies, cerclage du col utérin, menace d'accouchement prématuré, nécessitant un traitement (à discuter au cas par cas).
Détermination prénatale du génotype RHD fœtal à partir du sang maternel – Rapport d’évaluation

Contexte

I. RappeLS Physiopathologiques

I.1 Généralités sur le système de groupe sanguin RH

Le système RH est le système de groupe sanguin le plus complexe, car le plus polymorphe et le plus immunogène sur le plan transfusionnel. À ce jour, 50 antigènes sont identifiés. Cette liste ne prend pas en compte la variabilité qualitative et/ou quantitative de l’antigène RH1 (D) (1,2).

Le phénotype RH courant comprend l’antigène majeur RH1 (D) codé par le gène RHD et les antigènes RH 2 (C), RH 3 (E), RH 4 (c) et RH 5 (e) codés par le gène RHCE. En fonction des formes alléliques, 8 haplotypes classiques sont distingués².

Ces 2 gènes RHD et RHCE, localisés sur le chromosome 1, sont des gènes homologues (96 % d’identité) composés de 10 exons organisés de façon similaire³. L’organisation très particulière de ces 2 gènes avec une orientation opposée « tête bêche » facilite les réarrangements géniques entre RHD et RHCE et l’apparition de gènes hybrides. Ces gènes hybrides vont coder pour des protéines appelés « variants RH ».

Ces variants sont à l’origine d’une modification de l’expression antigénique. Ces modifications peuvent être de plusieurs types :
- affaiblissement ou non de l’expression antigénique (antigène RH faible) ;
- perte ou non de certains épitopes immunogènes (antigène RH partiel) ;
- perte d’expression d’un antigène de fréquence élevée (anciennement dénommé antigène public) ;
- perte d’expression d’un antigène de fréquence faible (anciennement dénommé antigène privé) ;
- possible expression de nouvel épitope⁴.

Ainsi, pour le gène RHD ces modifications génétiques donnent lieu à des phénotypes différents :
- phénotypes RH:P1 (D partiels) caractérisés par des modifications qualitatives de la protéine RH1. Ces modifications peuvent donner lieu à une allo-immunisation anti-RH1 (anti-D) en cas de stimulation obstétrico-transfusionnelle ;

Les conséquences cliniques et sérologiques de ces variants de l’antigène RH1 sont multiples et complexes à analyser en routine, en raison de l’absence de corrélation parfaite entre le phénotype RH et le génotype RH (déterminé par technique de biologie moléculaire) ; le phénotype reste déduit du génotype.

Classiquement, l’étude de l’expression des antigènes érythrocytaires fait appel à des techniques sérologiques basées sur l’hémagglutination. Seul un nombre limité d’antigènes érythrocytaires composant le phénotype érythrocytaire est recherché en

² Dce, DeE, ce, Dce, Cce,E,DCE et CE.
³ Chacun de ces gènes comporte 10 exons qui représentent une séquence de 60 000 pb (paires de bases) n’étant séparés que par 30 000 pb. La différence la plus importante entre ces 2 gènes est portée par l’intron 4 qui représente une délétion de 600 pb dans le gène RHD.
⁴ Epitope : déterminant antigénique (« dictionnaire de médecine », Flammarion).
pratique courante (Arrêté du 26 avril 2002, relatif à la bonne exécution des analyses de biologie médicale) (3).

I.1.1 Bases moléculaires contribuant à un phénotype RH: -1 (D négatif)
Le phénotype RH: -1 (D négatif) est caractérisé par l’absence de l’antigène RH1 (D) à la surface des érythrocytes.

La fréquence du phénotype RH: -1 (D négatif) n’est pas la même dans toutes les populations (4,5):
- 15 % environ chez les populations caucasiennes ;
- 3 % à 5 % chez les populations africaines ;
- moins de 0,1 % chez les populations d’origine asiatique.

Plusieurs mécanismes sont à l’origine du phénotype RH: -1 (D négatif):
- il existe une délétion complète de la totalité du gène RH1 : il s’agit du mécanisme moléculaire le plus fréquemment responsable du phénotype RH: -1 (D négatif) dans les populations européennes et chinoises (6,7) ; la femme est alors phénotypée RH: -1 (D négatif) et le gène RH1 est absent ;
- le gène RH1 est présent mais ne code pas l’antigène RH1 :
 - en raison de mutations ou d’insertions géniques rendant ce gène RH1 particulier, incapable de synthétiser d’antigène RH1 (D). Le pseudo gène RH1Ψ est l’un des mécanismes le plus fréquemment responsable du phénotype RH: -1RH -1 (D négatif) dans les populations noires africaines (8). Les modifications génétiques dans ce cas, consistent en une insertion de 37 pb (paires de bases) dans l’exon 4, une mutation dans l’exon 5 et des mutations ponctuées ou SNPs (polymorphisme d’un seul nucléotide) au niveau des exons 4 et 5 ;
 - un autre mécanisme, à l’origine de gène RH1 ne produisant pas d’antigène RH1 (D), est la constitution d’un gène hybride ne synthétisant pas d’antigène RH1 (D), par échange d’exons entre le gène RH1 et le gène RHCE. Le plus fréquent de ces gènes hybrides dans la population africaine est un remplacement des exons 4, 5, 6 et 7 du gène RH1 par ceux du gène RHCE aboutissant au gène hybride RHCEcς (9).

Dans ces 2 situations (pseudo gène RH1Ψ et gène hybride RHCEcς), la femme présente un phénotype RH: -1 (D négatif), mais il existe un gène RH1 détectable. Il s’agit donc de résultats faussement positifs du phénotype déduit, pour lequel il n’y a aucun risque d’allo-immunisation fœto-maternelle. Cependant, en dépistage la femme sera de phénotype RH: -1 (D négatif).

Au final, les mécanismes moléculaires aboutissant à la non-production de la protéine RH1 sont différents en fonction des origines ethniques de la femmes : chez les femmes d’origine européenne, le mécanisme prédominant du phénotype RH: -1 (D négatif) est la délétion complète du gène RH1 (D), alors que chez la femme africaine le phénotype RH: -1 (D négatif) est dans 66 % des cas lié au pseudo gène RH1Ψ, dans 18 % des cas lié à la délétion complète du gène RH1 (D) et dans 15 % des cas lié à la présence du gène hybride RH1DCς (10).

L’établissement du génotype est une première étape permettant d’établir la présence ou non du gène RH1. Son absence conduit à un phénotype RH: -1 (D négatif). En
revanche, son identification ne suffit pas à la déduction directe du phénotype RH:1 (D positif), il convient de s'assurer que ce gène est fonctionnel, notamment dans les populations africaines, donc de rechercher les variants les plus fréquents, avant d'en déduire le phénotype.

I.1.2 Bases moléculaires des variants RHD contribuant à un phénotype RH:1 (D positif)

Ces phénotypes sont classiquement caractérisés par des modifications qualitatives de la protéine RH1 (D) (antigène RHP1 (D partiel) et/ou par une diminution de l'expression membranaire de l'antigène RH1(D) (D faible).

Le type et la fréquence des différents variants RHD sont référencés sur la base de Wagner et Flegel (http://www.uni-ulm.de/~wflegel/RH/RIR/rirres.html), et dépendent du type de population étudiée.

La capacité des individus de phénotype RH:1 (D positif) à produire des allo anticorps anti-RH1 a permis de découvrir que l'antigène RH1 (D) était constitué d'une mosaïque d'épitopes. Ainsi une femme dont les hématies expriment un antigène RH1 (D) avec perte d'expression d'un épitope donné (antigène RH1 partiel [D partiel]) risque de s'immuniser contre l'épitope manquant en cours de grossesse, si elle y est exposée. Cet antigène partiel est actuellement considéré comme aussi immunisant que l'antigène RH1 complet produit chez une femme RH:-1 (D négatif) (11,12).

Le plus fréquent de ces antigènes partiels, dans la population caucasienne, responsable d'immunisation foeto-maternelle est le RHP1 de type VI (D VI). Il est donc important de savoir reconnaître cet antigène variant, afin que les mères RHP1 de type VI (D VI) soient classées RH:-1 (D négatif) et puissent ainsi recevoir une immunoprophylaxie anti–RH1 (D).

Pour que ces femmes soient classées comme phénotype RH:-1 (D négatif), et non RH:1 (D positif), il convient de les phénotyper avec un réactif contenant un anti-RH1 (D) monoclonal ne reconnaissant pas l'antigène RHP1 de type VI (D VI).

En revanche, il peut exister, suite à une exposition à un antigène RH1 (D) complet, mais d'expression affaiblie, une immunisation anti-RH de type auto-immunisation anti-RH1 (D). Celle-ci sera sans conséquence sur le plan obstétrical. Il conviendra donc en cas de phénotypage RH:W1 (D faible), de caractériser en biologie moléculaire cet antigène faible pour savoir s'il peut être ou non responsable d'une allo-immunisation foeto-maternelle. La prévalence de l'antigène RHW1 (D faible) dans la population caucasienne est estimée de 0,2 % à 1 % (1).

Sur le plan immunohématologique, la présence d'un variant RHD est suspectée en routine sur l'affaiblissement de l'expression de l'antigène RH1 (D), ou sur une discordance de résultats obtenus avec deux réactifs différents au cours de la réalisation du phénotypage RH:1 (D).

Dans certains cas, les sérums anti-RH1 (D) ne permettent pas d'hémagglutiner les érythrocytes qui possèdent une réduction de l'expression de l'antigène RH1 (D), et des analyses moléculaires de l'ADN seront nécessaires pour déterminer le génotype et ainsi confirmer l'existence de variants.

Seules les études en biologie moléculaire du gène RHD peuvent, de façon fiable, typer les variants RHD en antigènes RHP1 (D partiels) ou en antigènes RHW1 (D faibles). Compte tenu des conséquences transfusionnelles et obstétricales de l'allo-immunisation anti-RH1 (D), il importe de différencier les variants RHD en antigènes RHP1 (D partiels) ou en antigènes RHW1 (D faibles). La connaissance de l'ethnie de la patiente est un élément fondamental pour l'interprétation du phénotype.
Sur le plan obstétrical, les femmes enceintes bénéficient d'une recherche d'anticorps anti-érythrocytaires, anciennement dénommée RAI pour « recherche d'agglutinines irrégulières », réalisée au laboratoire d'immunohématologie à l'aide de techniques basées sur le principe de l'agglutination. Si le test de dépistage s'avère positif, il faut alors déterminer la spécificité de l'anticorps détecté avec une technique dite d'identification. En cas d’allo-anticorps anti-érythrocytaires, la spécificité de l'anticorps détecté permettra de différencier les anticorps responsables d'immunisation foeto-maternelle, de ceux qui ne le sont pas.

Il apparaît important de chercher un variant RHD chez les patientes de phénotype érythrocytaire RH:1 (D positif) qui présentent des anticorps anti-RH1 (D), car ils peuvent être responsables d'une allo-immunisation foeto-maternelle.

Le schéma 1 fournit quelques exemples de gène RHD variants.

Schéma 1.

- **RHD**
- **RHCE**
- **D+**
- **D– RHD deletion**
- **D+ RHDVI**
- **D– RHDΨ**
- **D– RHD-CE-Ds**
II. PRINCIPE DE LA DÉTERMINATION PRÉNATALE DU RHÉSUS FŒTAL D SUR SANG MATERNEL

Le clonage des gènes du système RH1 (rhésus D) et l'identification d'ADN fœtal circulant dans le sang maternal ont rendu possible la détermination de RH1 fœtal à partir du sérum ou du plasma de femmes enceintes. Cette technique a été décrite pour la première fois par Lo et al. en 1993 (13).

La première étape de la technique consiste à extraire l'ADN fœtal libre circulant, puis à amplifier par PCR5 (réaction en chaîne de la polymérase) les séquences du gène RHD.

II.1 L'ADN fœtal « libre » circulant (cell-free circulating fetal DNA)

L'identification formelle de l'ADN fœtal libre circulant (cffDNA) par Lo et al. en 1997 (14) dans le plasma ou le sérum de femmes enceintes a permis d'offrir une source de matériel génétique fœtal. En effet, la concentration en ADN fœtal dans le sérum maternal est très élevée comparativement à celle des cellules fœtales (15,16) simplifiant la procédure et la rendant plus rapide.

L'origine placentaire de l'ADN fœtal circulant dans le plasma/sérum maternal ne fait plus aucun doute, même si elle n’est pas exclusive. Le nombre de cellules fœtales intactes circulant dans le sang maternal a été évalué à environ une cellule par millilitre de sang, et ne peut donc pas expliquer la quantité d’ADN fœtal plasmatique ou sérique observée. Le placenta est donc la source logique d'ADN fœtal, en raison de sa taille et de son activité cellulaire importante. L'observation d'une augmentation croissante, tout au long de la grossesse de la concentration en ADN fœtal (15), conforte cette hypothèse (de 3,4 % au 1er trimestre à 6,2 % au 3e trimestre). Par ailleurs, la cinétique de l'ADN fœtal dans la circulation sanguine maternelle conforte également l'hypothèse que le placenta en est la source essentielle. Une étude, ciblée sur les fausses couches traitées par aspiration ou par méthode médicamenteuse, est venue compléter cette information (17).

Un point particulièrement important est celui de l'élimination de l’ADN fœtal du sérum maternel. Il a été clairement démontré (18) que l’ADN fœtal libre est totalement éliminé de la circulation maternelle moins de 24 heures après l’accouchement. Ainsi, Lo et al. ont montré que la clairance de l’ADN fœtal en post-partum était extrêmement rapide avec une demi-vie de 4 à 30 min (19).

L’ADN fœtal libre ne persiste pas dans la circulation maternelle contrairement à certaines cellules fœtales, et son analyse n’est donc pas faussée par des grossesses antérieures.

Par ailleurs, cet ADN fœtal est « dilué » au sein d’un ADN largement majoritaire et hautement homologue qu’est l’ADN libre circulant d’origine maternelle sans qu’on puisse l’isoler spécifiquement actuellement. Cette donnée est fondamentale puisque ne pourront être recherchées et/ou étudiées que les seules séquences géniques fœtales absentes ou différentes du génome maternel. Par voie de conséquence, les deux indications essentielles de l’analyse de l’ADN fœtal circulant dans le sérum maternel sont la détermination du sexe fœtal d’une part et du génotype RHD fœtal d’autre part.

5 La réaction en chaîne de la polymérase (PCR) est une méthode permettant d'amplifier, par action enzymatique, une brève séquence d'ADN par l'intermédiaire de cycles successifs de dénaturation, de fixation sur une amorce d'oligonucléotides et d'extension des amorces à l'aide d'un ADN polymérase.
II.2 Modalités de réalisation de la PCR

La méthode de polymérisation en chaîne de l'ADN est une méthode d'amplification génique permettant la multiplication exponentielle des séquences recherchées.

La PCR est une méthode permettant la multiplication d'une courte séquence d'ADN appelée « séquence cible », à partir d'une infime quantité d'ADN génomique. La séquence cible est multipliée par synthèse successive à l'aide d'amorces oligonucléotidiques et d'une ADN polymérase thermostable.

L'insertion de contrôles dans les séries d'analyse par PCR est indispensable pour vérifier la qualité et la performance du test. Un contrôle positif permet de contrôler la sensibilité de la méthode à l'aide d'un échantillon d'ADN témoin connu.

Pour le contrôle négatif, il s'agit :
- d'un tube contenant tous les réactifs et l'enzyme, mais sans l'ADN ;
- d'un ADN témoin non amplifiable par les amorces.

Ces contrôles négatifs permettent de vérifier la spécificité de la réaction.

Dans le cas du diagnostic prénatal, la PCR étant réalisée à partir du sang maternel, l'ADN fœtal se retrouve en quantité moindre que l'ADN maternel présent en grande quantité. L'absence d'amplification des segments recherchés peut témoigner de leur non présence, d'un problème de procédure (par exemple un problème d'extraction) aussi bien que de l'insuffisance de matériel fœtal. Un résultat négatif peut alors correspondre à un manque d'ADN fœtal dans le plasma maternel ou à une insuffisance de sensibilité de la méthode PCR qui ne permet pas d'amplifier de faibles quantités d'ADN. Ce résultat correspond alors à un faux négatif.

Il est donc indispensable d'inclure des contrôles internes témoignant de la bonne amplification de l'ADN fœtal (20).

Dans le but de confirmer que l'ADN libre fœtal est présent, il est possible d'utiliser simultanément dans le test une PCR amplifiant SRY, mais ce test ne sera positif et donc effectif que si le fœtus est masculin (21-28). Lorsque le résultat est une absence d'amplification pour le gène RHD et SRY suggérant que le fœtus est féminin, il a été proposé de tester le polymorphisme de l'ADN qui comporte des insertions ou des délétions, dans le but d'obtenir un résultat positif lors de la présence d'ADN fœtal (29). Ce test est loin d'être utilisable en routine, car il ne correspond pas véritablement à un contrôle interne puisqu'il ne peut pas être incorporé dans la PCR multiplex lors de l'amplification du gène RHD. De plus, le nombre élevé de polymorphismes testés rend son interprétation difficile.

Récemment, une différence de méthylation dans le gène RASSF1A a été rapportée entre l'ADN des cellules maternelles et celle du placenta. L'élimination des séquences maternelles hypométhylées par une enzyme de restriction sensible à la méthylation permet la détection des séquences fœtales hyperméthylées permettant un contrôle de la présence d'ADN fœtal dans le sang maternel. Sur 71 femmes enceintes testées, une séquence hyperméthylée du gène RASSF1A a été détectée dans tous les cas, confirmant l'origine fœtale de l'ADN indépendamment du sexe fœtal (30).

L'incorporation à la réaction de gènes intrinsèques comme le CCR5, la bêtaglobine (HBB), la bêta-actine (ACTB) ou l'albumine (ALB) permet d'obtenir des témoins de l'amplification de l'ADN fœtal et maternel. Il ne s'agit donc pas d'un contrôle de l'ADN fœtal, mais d'un témoin de la présence d'ADN et du bon déroulement de l'amplification.
Cependant cela donne une indication de la quantité d’ADN présent, et une quantité excessive d’ADN est témoin d’une lyse cellulaire compromettant la détection d’ADN fœtal (21,22,24,31-35).

Certaines équipes ont utilisé comme contrôle interne de l’ADN exogène. Costa et al. ont proposé, pour limiter les résultats faussement négatifs, d’ajouter dans le sérum maternel prélevé, juste avant l’extraction de l’ADN, un ADN traceur de souris (36). Cet ADN traceur permet de contrôler les étapes d’extraction et d’amplification. En cas de résultats négatifs pour l’amplification du gène RHD, la présence et l’amplification correcte de l’ADN traceur de souris sont vérifiées. Ainsi le même échantillon de sérum, que celui utilisé pour l’extraction de l’ADN et la détection du gène RHD, est réutilisé pour une seconde PCR dirigée sur le gène GALT de la souris (galactose-1-phosphate uridylyltransferase). Des résultats positifs dans cette PCR démontrent l’efficacité du processus PCR, et valident un résultat négatif pour la détection du gène RHD. Cette étape permet de différencier les résultats vraiment négatifs des résultats faussement négatifs provenant d’une extraction insuffisante d’ADN. Bien qu’elle ne permette pas d’affirmer la présence d’ADN fœtal dans le sérum analysé en cas de recherche négative du gène RHD, elle présente l’intérêt de valider la totalité de la procédure analytique quel que soit le sexe du foetus (36). Rouillac-Le Scellier et al. ont eux utilisé de l’ADN de maïs (37) ou d’autres équipes des plasmides d’E Coli (38).

Il existe plusieurs types de PCR :

- la PCR qualitative identifie une séquence d’acides nucléiques par la présence d’amplicons ou produits de PCR. Lorsqu’elle est quantitative, elle permet de déterminer la concentration d’ADN ou d’ARN présents dans le tube réactionnel. Elle comprend plusieurs étapes : dénaturation, hybridation et extension. Chaque cycle comprend ces étapes et permet le doublonnement du nombre de copies de la séquence cible. La PCR classique expose au risque de contamination, notamment lors des étapes d’ouverture des tubes pour réaliser la détection des amplicons ;

- la PCR nichée comprend en fait deux PCR successives : une première amplification, dont le produit est à nouveau amplifié en faisant appel à un second couple d’amorces. Ce couple s’hybride à une partie interne de la séquence amplifiée lors de la première PCR. Le risque de contamination est important lors de l’ouverture du tube pour ajouter le deuxième couple d’amorces ;

- la PCR en temps réel combine la PCR quantitative et l’analyse simultanée des produits amplifiés. Elle présente de nombreux avantages : la réalisation en une seule étape en tube fermé limite les risques de contamination. Elle peut être réalisée en multiplex permettant l’identification de plusieurs séquences cibles. Elle est de réalisation rapide : 30 à 60 minutes pour amplifier 25 à 30 cycles (20). L’utilisation de sondes fluorescentes permet, lorsque le gène cible est présent de quantifier l’ADN fœtal présent dans le sang maternel, l’amplification de l’ADN entraînant une augmentation proportionnelle de la fluorescence. Le seuil, c’est-à-dire le nombre de cycles de PCR nécessaires pour détecter une fluorescence, est proportionnel à la quantité d’ADN fœtal présent dans l’échantillon.

Deux types de tests sont actuellement utilisés en France :

- une trousse diagnostique (ou kit) « Free DNA fetal kit rhésus D » (marquage CE) pour une PCR en temps réel est disponible depuis juillet 2007. Les cibles amplifiées sont les exons 10 et 7 du gène RHD6 ;

6 Une trousse de seconde génération permettant l’amplification de 3 cibles : les exons 7, 10 et 5, devrait être disponible au mois de mars 2010.
- des tests dits « maison », développés et réalisés par des laboratoires, s'appuyant sur la réalisation d'une PCR en temps réel, les cibles amplifiées étant soit l'exon 10 seul, soit les exons 7 et 10 du gène RHD.

III. L’ALLO-IMMUNISATION FŒTO-MATERNELLE – STRATÉGIES DIAGNOSTIQUES ET THÉRAPEUTIQUES ACTUELLES

L'allo-immunisation fœto-maternelle anti-RH1 (D) se définit par la production d'anticorps maternels anti-RH1 (anti-D) dirigés contre les globules rouges fœtaux. L'étiologie essentielle, en dehors d'une transfusion, est le passage de sang fœtal dans la circulation maternelle lors d'un accouchement ou de fausses couches ou de certaines situations générant une stimulation antigénique. Il faut noter que ce passage de sang fœtal peut également survenir lors de tout geste invasif réalisé pendant la grossesse.

Elle se produit chez les femmes de phénotype érythrocytaire RH:-1 (D négatif) enceintes d'un fœtus de phénotype érythrocytaire RH:1 (D positif). Les anticorps anti-RH1 (D) de type IgG maternels traversent le placenta vers la circulation fœtale, et peuvent être responsables de maladie hémolytique fœtale et néonatale sévère.

Le nombre de conceptions annuelles en France est estimé à 1,1 million. Ce chiffre comprend les naissances vivantes, les fausses couches spontanées, les grossesses extra-utérines, les interruptions médicales de grossesses et les interruptions volontaires de grossesses (7 168).

Environ 15 % de la population d'origine caucasienne est RH:-1 (D négatif), 3 % à 5 % dans la population d'origine africaine et moins de 0,1 % chez les patientes d'origine asiatique, ce qui représente 150 000 à 160 000 femmes enceintes RH:-1 (D négatif) chaque année (4,40).

Parmi ces femmes enceintes RH:-1 (D négatif), seulement 60 % sont enceintes d’un fœtus de groupe RH:1 (D positif) potentiellement responsable d’allo-immunisation anti-RH1 (D) en l’absence de mise en œuvre de prophylaxie.

Ces chiffres porteraient donc à 90 000 le nombre annuel de femmes RH:-1 (D négatif) enceintes d’un fœtus RH:1 (D positif), et ce chiffre diminuerait à 75 000 au-delà de 28 semaines d’aménorrhée (SA).

Deux situations cliniques peuvent se présenter :

1) la femme RH:-1 (D négatif) est déjà immunisée et doit, en conséquence, bénéficier d’un suivi dans un service spécialisé. Le titrage et le dosage pondéral

Selon le Collège national des gynécologues et obstétriciens français (CNGOF).

Au premier trimestre : fausses couches spontanées ou menace de fausses couches spontanées, interruption de grossesse, grossesse molaire, grossesses extra-utérine, métrorragies, choriocentèse, amniocentèse, réduction embryonnaire, traumatisme abdominal.

Au 2e et 3e trimestre :

- risque important : interruption médicale de grossesse, fausse couche spontanée tardive, mort fœtal in utero, version par manœuvre externe, traumatisme abdominal ou pelvien, intervention chirurgicale abdominale ou pelvienne, prélèvement ovulaire, accouchement ;
- risque modéré : métrorragies, cerclage du col utérin, menace d'accouchement prématuré, nécessitant un traitement (à discuter au cas par cas).
des anticorps sont réalisés tous les mois jusqu'à 20 SA puis tous les 15 jours, voire toutes les semaines ensuite. À ce suivi biologique s'associent des explorations non invasives d'évaluation d'une anémie fœtale potentielle : échographie fœtale avec mesure du pic systolique des vitesses de l'artère cérébrale moyenne et du rythme cardiaque fœtal (41) ;
2) la femme enceinte RH:-1 (D négatif) n’est pas immunisée (absence d’anti-RH1 détectables), et le père présumé du fœtus est en situation d’hétérozygotie probable pour le gène \textit{RHD}. La prise en charge est alors préventive, et consiste à éviter la réaction immunitaire maternelle contre les globules rouges fœtaux présentant l'antigène RH1, par l’administration parentérale d’immunoglobulines anti-RH1 (D).

Cette immunoprophylaxie anti-RH1 (D), en postnatal dans les 72 heures suivant l'accouchement et de manière ciblée après tout événement à risque d'hémorragie fœto-maternelle\(^8\), a été mise en place dans les années 1960. Elle a permis, en réduisant les risques d'allo-immunisation, de diminuer la prévalence de la maladie hémolytique du fœtus et du nouveau-né (42).

En dépit de ces mesures, la prévalence des incompatibilités RH1 (D) résiduelles est estimée à 0,9 pour 1 000 naissances, et concernerait 730 à 750 femmes par an en France chaque année (43). Les trois quarts des ces allo-immunisations résiduelles résulteraient d’une prévention ciblée inadaptée ou oubliée, et un quart de ces allo-immunisations seraient le fait d’hémorragies fœto-maternelles survenant de manière occulte au 3e trimestre, sans facteur de risque identifiable, mais en raison d’un passage spontané d’hématies fœtales dans la circulation maternelle en fin de grossesse (43).

Le Collège national des gynécologues obstétriciens français (CNGOF) a donc recommandé en 2005, afin de diminuer cette prévalence, une prophylaxie systématique au 3e trimestre chez les femmes enceintes de phénotype RH:-1 (D négatif) en plus de la prévention ciblée en cours de grossesse et après l'accouchement (44).

Actuellement, toute femme enceinte RH:-1 (D négatif), non immunisée contre l'antigène RH1 (D), se voit proposer de manière systématique une injection d’immunoglobulines anti-RH1 (D) au terme de 28 SA (44).

Cette prophylaxie systématique a permis dans de nombreux pays de diminuer l’allo-immunisation survenant en cours de grossesse ainsi que le nombre d’ictères graves néonataux (45-52).

Les immunoglobulines anti-RH1 (D), utilisées actuellement dans l’immunoprophylaxie rhésus, sont extraites de plasma de donneurs RH:-1 (D négatifs) hyperimmunisés. Comme pour tout produit dérivé du sang, en dépit des mesures maximales pour garantir la sécurité virale, le risque de transmission virale, bien qu’infiniment faible, existe, notamment avec des agents infectieux transmissibles par le sang. Cependant, aucun cas de transmission virale par ces immunoglobulines n’a été rapporté à ce jour.

\(^8\) Selon le Collège national des gynécologues et obstétriciens français (CNGOF).

Au premier trimestre : fausses couches spontanées ou menace de fausses couches spontanées, interruption de grossesse, grossesse molaire, grossesses extra utérine, métrorragies, choriocentèse, amniocentèse, réduction embryonnaire, traumatisme abdominal.

Au 2e et 3e trimestre :
- risque important : interruption médicale de grossesse, fausse couche spontanée tardive, mort foetal in utero, version par manœuvre externe, traumatisme abdominal ou pelvien, intervention chirurgicale abdominale ou pelvienne, prélèvement ovulaire, accouchement ;
- risque modéré : métrorragies, cerclage du col utérin, menace d'accouchement prématuré, nécessitant un traitement (à discuter au cas par cas).
La connaissance du statut RH1 (rhesus D) du fœtus permettrait de cibler les grossesses nécessitant une prise en charge spécifique. Il est possible de déterminer le groupe sanguin fœtal par ponction de sang fœtal, en réalisant un test d'agglutination, ou alors de réaliser un génotypage sur liquide amniotique, lors de l'établissement d'un caryotype par exemple. Toutefois, ces gestes invasifs sont susceptibles de provoquer ou d'aggraver l'augmentation du titre des anticorps et une immunisation maternelle en favorisant les hémorragies fœto-maternelles. Ils sont, de plus, générateurs de fausses couches dans 1 % des cas. Par ailleurs, certains auteurs ont souligné que cette technique par PCR sur liquide amniotique était potentiellement exposée à des résultats faussement négatifs et faussement positifs en présence de gènes variants (53).

C'est pourquoi certaines équipes, en cas de situations à risque d'allo-immunisation fœto-maternelle, ne réalisent pas de gestes invasifs pour la détermination du RH1 (D) fœtal, mais préconisent uniquement un suivi échographique par mesure des vitesses cérébrales sachant que ce suivi est inutile en cas de fœtus RH:-1 (D négatif).

Étant donné que 30 % à 40 % des femmes de phénotype RH:-1 (D négatif) sont à l'abri de l'immunisation puisqu'enceintes de fœtus RH:-1 (D négatif), l’alternative représentée par la détermination du génotype RH 1 (D) fœtal sur sang maternel apparaît comme une technique intéressante. En effet, cette détermination permettrait d'une part d'éviter aux femmes RH:-1 (D négatif) dont le fœtus est RH:-1 (D négatif) de recevoir des injections inutiles d’immunoglobulines en cours de grossesse ou à l’accouchement et, d’autre part, chez les femmes déjà immunisées d’alléger la surveillance en cas de fœtus RH:-1 (D négatif) (54).

IV. ASPECTS RÈGLEMENTAIRES

IV.1 Examens médicaux obligatoires durant la grossesse

Les examens médicaux obligatoires des femmes enceintes sont prévus réglementairement (article R. 2122-1 du CSP). Parmi ces examens figurent notamment :

- 1° Lors du premier examen prénatal
 a) « En cas de première grossesse, une détermination des groupes sanguins (A, B, O, phénotype rhésus complet et Kells) si la patiente ne possède pas de carte de groupe sanguin complète (deux déterminations) ;

- 2° ... au cours du quatrième examen prénatal (sixième mois de grossesse) ... et chez les femmes à rhésus négatif ou précédemment transfusées, la recherche d'anticorps irréguliers, à l'exclusion des anticorps dirigés contre les antigènes A et B ; si la recherche est positive, l'identification et le titrage des anticorps sont obligatoires ;
- 3° Au cours du sixième ou du septième examen prénatal (huitième ou neuvième mois de grossesse), une deuxième détermination du groupe sanguin A, B, O) rhésus standard si nécessaire ;
- Au cours des sixième et septième examens prénatals (huitième et neuvième mois de grossesse), chez des femmes à rhésus négatif ou précédemment transfusées, la recherche d'anticorps irréguliers, à l'exclusion des anticorps dirigés contre les antigènes A et B ; si la recherche est positive, l'identification et le titrage des anticorps sont obligatoires [...] ».
IV.2 Diagnostic prénatal

« Le diagnostic prénatal (DPN) sur embryon et fœtus in vivo comprend le diagnostic génétique chromosomique (étude de la forme et du nombre de chromosomes) ou moléculaire (recherche sur la structure de l'ADN), biochimique, infectiologique et immunologique à partir de prélèvements réalisés sur le fœtus, ses annexes ou sur la mère ».

Dans le domaine du DPN, le décret précise que l'Agence de la biomédecine est chargée d'émettre un avis sur les demandes d'autorisation des structures pour pratiquer les activités de DPN avant délivrance de l'autorisation par les Agences régionales de l'hospitalisation (ARH) (55). L'Agence de la biomédecine a la responsabilité d'agréer les praticiens responsables de l'activité de diagnostic prénatal. En cas de violation, elle peut suspendre ou retirer cet agrément. De même, le décret attribue à l'Agence de la biomédecine l'autorisation des centres pluridisciplinaires de diagnostic prénatal (CPDPN), chargés notamment de délivrer les attestations d'interruptions médicales de grossesse, en cas de pathologie grave et incurable au moment du diagnostic (55).

V. CONDITIONS ACTUELLES DE LA PRISE EN CHARGE PAR L’ASSURANCE MALADIE

Aucun test de détermination prénatale du RHD sur sang maternel n’est inscrit à la Nomenclature des Actes de Biologie Médicale (NABM). À ce jour, les seuls examens inscrits à la NABM sont :

- Phénotypes RH (C, c, E, e) et KELL (K) (1145) ;
- Groupage sanguin ABO-RH (D) (GS) (1140).

VI. IDENTIFICATION DANS LES NOMENCLATURES ÉTRANGÈRES

Parmi les trois nomenclatures disponibles étudiées (américaine, belge et canadienne), seule la nomenclature belge a intégré cet examen :

- Recherche du génotype RH1 d’un fœtus sur le sang d’une mère RH:-1(Rh D négatif) (maximum 1) (code : 587053 587064).
MÉTHODE D’ÉVALUATION

L’objectif de ce travail est d’évaluer la faisabilité et la validité de la réalisation du génotypage sur sang maternel, les performances diagnostiques, mais également les conditions de réalisation du test en termes de type de population concernée par le test, terme de la grossesse lors de la réalisation du test, nombre de prélèvements à réaliser pour confirmer un résultat.

La méthode d’évaluation utilisée dans ce rapport par la HAS (Annexe I) est fondée sur :
- l’analyse critique des données identifiées de la littérature scientifique ;
- la position argumentée de professionnels de santé.

I. RECHERCHE DOCUMENTAIRE

I.1 Méthode

La recherche a porté sur les sujets et les types d’études définis en accord avec les évaluateurs, et a été limitée aux publications en langue française et anglaise.

Les sources suivantes ont été interrogées :
- pour la littérature francophone : la base de données Pascal et la Banque de Données en Santé Publique ;
- pour la littérature internationale : la base de données Medline ;
- la Cochrane Library ;
- les sites Internet publiant des recommandations, des rapports d’évaluation technologique ou économique ;
- les sites Internet des sociétés savantes compétentes dans le domaine étudié.

Cette recherche a été complétée par les apports bibliographiques des experts et les références citées dans les documents analysés.

I.2 Résultats

La stratégie de recherche et la liste des sources interrogées sont détaillées dans l’Annexe II.

II. GROUPE DE TRAVAIL

II.1 Constitution et composition

Les sociétés savantes concernées par ce thème ont été sollicitées pour participer à cette évaluation.
Elles ont communiqué une liste de professionnels susceptibles de participer au groupe...
(la liste des sociétés contactées et des membres ayant participé au groupe figure en Annexe III).

II.2 Recueil de la position du groupe
La position du groupe a été recueillie à l'occasion d'un groupe de travail qui s'est tenu le 11 janvier 2010, dont le compte-rendu figure intégralement en Annexe III.
RÉSULTATS DE L’ÉVALUATION

I. ANALYSE DES DONNÉES DE LA LITTÉRATURE

Seules les études comportant au moins 10 patientes ont été retenues. Les critères de jugement relevés étaient : le type de PCR réalisée, l'identification des exons amplifiés, l'utilisation de témoins pour la réalisation de la PCR, les méthodes de référence, les résultats diagnostiques : sensibilité, spécificité, performance, les raisons des tests non concluants.

La recherche bibliographique a permis de retenir 33 publications. Ces études sont des séries de cas présentant 34 procédures différentes, et une étude distinguant pour une même procédure deux populations différentes (59).

I.1 Description de la technique de la détermination prénatale du génotype RHD fœtal à partir du sang maternel

I.1.1 Présentation des techniques de PCR

Sur la totalité des études analysées, la PCR en temps réel était la technique la plus fréquemment utilisée (26 études) (cf. Tableau Annexe V).

Les études ont montré que la PCR en temps réel est devenue la méthode de référence dans de nombreux laboratoires (22-24,31,32,36,59-64), et particulièrement dans toutes les études récentes (25,26,28,33-35,37,65-71), alors que la PCR conventionnelle a souvent été décrite dans les études plus anciennes (59,60,62,72-78).

La PCR nichée a été utilisée dans une des études (77) portant sur 99 patientes caucasiennes enceintes rhésus négatif. Les auteurs ont souligné la complexité des étapes à respecter pour éviter toute contamination, et la difficulté de proposer ce type de procédure à large échelle.

Par ailleurs, de nombreux auteurs ont utilisé des PCR multiplex capables de détecter simultanément plusieurs exons (22,28,62,64,66,68,71).

La majorité des laboratoires ont extrait l’ADN fœtal à partir du plasma maternel. Cependant, d’autres laboratoires ont utilisé le sérum, car il peut se conserver plus longtemps que le plasma, permettant ainsi le prélèvement dans un centre et l’extraction d’ADN dans un autre. Certaines équipes ont extrait l’ADN des érythroblastes (36,60,72,74,76). Deux d’études ont rapporté l’extraction d’ADN sur du sang total (23,32).

Deux études ont utilisé la présence de l’ARN dans les érythroblastes au lieu d’utiliser l’ADN fœtal (72,74). L’argument majeur de l’utilisation de l’ARN était que celui-ci est présent en copies multiples par rapport à l’ADN, et serait donc plus facile à détecter. De plus, il serait, selon les auteurs, plus sensible à la dégradation, et donc réduirait le risque de contamination lors des manipulations PCR. D’autres études seraient nécessaires pour confirmer ces résultats.

Pour la réalisation du génotypage RHD, ce sont les régions les plus divergentes entre le RHD et RHCE qui doivent être testées. Il a été montré que ces régions sont localisées dans les exons 4, 5, 7 et 10 et dans l’intron 4 (79).
Ces exons ont été testés dans les procédures publiées. Toutefois, il existe une grande hétérogénéité quant au nombre et à la localisation des loci amplifiés (Tableaux 1 à 3).

Douze procédures n'ont testé qu'un seul exon :
- exon 7 dans 5 cas (23,24,60,63,73) ;
- exon 10 dans 7 cas (31,32,36,61,65,74,75).

Treize procédures ont testé 2 exons du gène RHD :
- les exons 7 et 10 ont été les marqueurs les plus souvent utilisés (25,33-35,37,59,67,72,76) ;
- exons 5 et 7 (69,70) ;
- exons 4 et 10 (77) ;
- exon 10 et intron 4 (78).

Neuf procédures ont testé trois exons ou plus :
- exons 4, 5 et 10 (26,28,62,64,66,68) ;
- exons 7, 10 et intron 4 (25) ;
- exons 4, 5, 6 et 10 (22) ;
- exons 4, 5, 7 et 10 (71).

L’identification de variants du gène RHD a montré que, dans certaines populations, la mise en évidence d’un gène RHD pouvait ne pas conduire à l’expression de la protéine RH1 (cf. paragraphe I.1), et rendre difficile la déduction du phénotype à partir du génotype.

Certains auteurs ont cherché à identifier l’existence de gène variants non fonctionnels. Ainsi, l’existence d’allèles particulièrement représentés dans certaines populations, comme le pseudogène RHDΨ chez les femmes Noires Africaines, a conduit les équipes à amplifier au moins deux exons spécifiques du gène RHD. En effet, l’amplification du seul exon 4 ou 5 ne permet pas la détection du pseudo gène Ψ chez les femmes Noires Africaines ou la reconnaissance du DVI partiel.

Des sondes PCR, spécifiques pour la recherche de gènes variants dans la population africaine, ont été utilisées (22,62,64,69,80).

Finning et al. (22) ont réalisé une étude visant à identifier les régions du RHD sans détecter le pseudogène RHDΨ. L’étude a été menée sur 137 grossesses. Le pseudogène RHD Ψ différait du RHD fonctionnel par une mutation sur les exons 4 et 6 et plusieurs mutations sur l’exon 5. Les auteurs ont suggéré de réaliser la PCR soit sur l’exon 5, soit sur les exons 7 ou 10, pour éviter, en cas de pseudogènes RHDΨ et d’hybrides RH Cce+, de déduire faussement un phénotype RH:1 (D positif).
Tableau 1. Présentation des études, dont la procédure teste un seul exon.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Effectif</th>
<th>Origine ethnique des femmes</th>
<th>Type de PCR</th>
<th>Nombre de réalisations</th>
<th>Modalités d'extraction de l'ADN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faas et al., 1998 (73)</td>
<td>31</td>
<td>NA</td>
<td>PCR</td>
<td>NA</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Bishoff et al., 1999 (60)</td>
<td>20</td>
<td>NA</td>
<td>PCR conventionnelle/PCR temps réel fluorescent</td>
<td>NA</td>
<td>ADN fœtal provenant du sérum maternel</td>
</tr>
<tr>
<td>Randen et al., 2003 (23)</td>
<td>114</td>
<td>NA</td>
<td>PCR temps réel/PCR duplex fluorescent</td>
<td>2-5 réplicats</td>
<td>ADN fœtal provenant du sang maternel</td>
</tr>
<tr>
<td>Van der Schoot et al., 2004 (63)</td>
<td>1 257</td>
<td>NA</td>
<td>PCR temps réel</td>
<td>NA</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Rijnders et al., 2004 (24)</td>
<td>72</td>
<td>NA</td>
<td>PCR temps réel</td>
<td>NA</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Exon 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lo et al., 1998 (31)</td>
<td>57</td>
<td>NA</td>
<td>PCR temps réel</td>
<td>NA</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Cunningham et al., 1999 (74)</td>
<td>96</td>
<td>NA</td>
<td>PCR</td>
<td>NA</td>
<td>ARN fœtal des érythroblastes fœtaux provenant du sérum maternel</td>
</tr>
<tr>
<td>Nelson et al., 2001 (75)</td>
<td>60</td>
<td>NA</td>
<td>PCR RHD/SRY</td>
<td>NA</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Zhong et al., 2001 (61)</td>
<td>34</td>
<td>NA</td>
<td>PCR multiplex temps réel</td>
<td>NA</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Costa et al., 2002 (36)</td>
<td>106</td>
<td>NA</td>
<td>PCR duplex temps réel (Duplicat)</td>
<td></td>
<td>ADN fœtal provenant du sérum maternel</td>
</tr>
<tr>
<td>Turner et al., 2003 (32)</td>
<td>31</td>
<td>NA</td>
<td>PCR temps réel</td>
<td>Duplicat</td>
<td>ADN fœtal sur sang total maternel</td>
</tr>
<tr>
<td>Gautier et al., 2005 (65)</td>
<td>28511</td>
<td>Caucasienne</td>
<td>PCR temps réel quantitative</td>
<td>Duplicat</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
</tbody>
</table>

NA : non applicable ; PCR : polymerase chain reaction ; ADN : acide désoxyribonucléique ; SRY : Sex-determining Region of Y chromosome.

10 Au départ inclusion de 2 359 (15 patientes avec variant ont été exclues de l'étude). Les sérologies fœtales étaient disponibles uniquement pour 1 257 fœtus.
11Exclusion de 2 femmes RHD négatif avec pseudogène ou variant.
Tableau 2. Présentation des études, dont la procédure teste deux exons.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Effectif</th>
<th>Origine ethnique des femmes</th>
<th>Type de PCR</th>
<th>Nombre de runs : duplicat, triplicat, etc.</th>
<th>Modalités d’extraction de l’ADN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exons 7et 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Mufti et al., 1998 (72)</td>
<td>35</td>
<td>NA</td>
<td>PCR</td>
<td>NA</td>
<td>Érythroblastes fœtaux (ADN)</td>
</tr>
<tr>
<td>Al-Mufti et al., 1998 (72)</td>
<td>35</td>
<td>NA</td>
<td>PCR</td>
<td>NA</td>
<td>Érythroblastes fœtaux (ARN)</td>
</tr>
<tr>
<td>Siva et al., 2003 (76)</td>
<td>28</td>
<td>NA</td>
<td>PCR</td>
<td>NA</td>
<td>ADN fœtal provenant du plasma ou sérum maternel</td>
</tr>
<tr>
<td>Rouillac-Le Sciellour et al., 2004 (59)</td>
<td>545 12 femmes immunisées</td>
<td>Caucasienne et asiatique</td>
<td>PCR temps réel quantitative / PCR conventionnelle</td>
<td>2 duplicats, 1PCR temps réel : 1.</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Rouillac-Le Sciellour et al., 2004 (59)</td>
<td>306 13 femmes non immunisées</td>
<td>Caucasienne et asiatique</td>
<td>PCR temps réel quantitative / PCR conventionnelle</td>
<td>2 duplicats, 1PCR temps réel : 1.</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Hromadnikova et al., 2005 (33)</td>
<td>39 immunisées ou non immunisées 4 RHD faible</td>
<td>NA</td>
<td>PCR temps réel quantitative</td>
<td>5 réplicats</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Hromadnikova et al., 2005 (34)</td>
<td>45 immunisées ou non</td>
<td>NA</td>
<td>PCR multiplex temps réel quantitative</td>
<td>5 réplicats</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Hromadnikova et al., 2005 (35)</td>
<td>23 immunisées</td>
<td>Caucasienne</td>
<td>PCR multiplex temps réel quantitative</td>
<td>7 réplicats</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Banch Clausen et al., 2005 (67)</td>
<td>56 (dont 18 échantillons)</td>
<td>NA</td>
<td>PCR temps réel quantitative</td>
<td>4 réplicats</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Rouillac et al., 2007 (37)</td>
<td>300 (310 échantillons)</td>
<td>NA</td>
<td>PCR temps réel quantitative</td>
<td>NA</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
</tbody>
</table>

12 L’étude a été menée sur 893 femmes RH:-1, dont 42 (4 %) ont été exclues, car présentant un gène variant pseudogène RHDΨ ou gène hybride, dans cette population, l’analyse a concerné la population déjà immunisée : n : 545 femmes.

13 L’étude a été menée sur 893 femmes RH:-1, dont 42 (4 %) ont été exclues, car présentant un gène variant pseudogène RHDΨ ou gène hybride, dans cette population, l’analyse a concerné la population non immunisée : n : 306 femmes.
Tableau 2 (suite) Présentation des études, dont la procédure teste deux exons.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Effectif</th>
<th>Origine ethnique des femmes</th>
<th>Type de PCR</th>
<th>Nombre de runs : duplicat, triplicat, etc.</th>
<th>Modalités d'extraction de l'ADN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exons 5 et 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finning et al., 2008 (69)</td>
<td>1 869(^{14})</td>
<td>55 % blanche, 8 % asiatique, 1,5 % noire, 0,5 % afro-caraïbe, 1 % mélangée, 33 % inconnue</td>
<td>PCR temps réel quantitative</td>
<td>NA</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Müllner et al., 2008 (70)</td>
<td>1 022(^{15})</td>
<td>NA</td>
<td>PCR duplex temps réel quantitative</td>
<td>NA</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Exons 4 et 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dif-Couvreux et al., 2006</td>
<td>99</td>
<td>Caucasian</td>
<td>PCR nichée conventionnelle</td>
<td>NA</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>(77)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 10 et intron 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machado et al., 2006 (78)</td>
<td>81</td>
<td>Européenne, africaine, indigène</td>
<td>PCR conventionnelle</td>
<td></td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
</tbody>
</table>

NA : non applicable ; PCR : *polymerase chain reaction* ; ADN : acide désoxyribonucléique ; ARN : acide ribonucléique.

\(^{14}\) Inclusion initiale de 1 997, exclusion de 128 fœtus sans sérologies postnatales, effectif finalement analysé : 1 869 femmes.

\(^{15}\) Inclusion initiale de 1 113, exclusion de 5 patientes avec variants et 23 problèmes de sérum, exclusion de 63 fœtus sans sérologies, effectif finalement analysé : 1 022 patientes.
Tableau 3. Présentation des études, dont la procédure teste 3 exons, voire plus.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Effectif</th>
<th>Origine ethnique des femmes</th>
<th>Type de PCR</th>
<th>Nombre de runs : duplicat, triplicat, etc.</th>
<th>Modalités d'extraction de l'ADN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exons 4, 5 et 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson et al., 2003 (62)</td>
<td>47</td>
<td>NA</td>
<td>PCR conventionnelle / PCR temps réel</td>
<td>NA</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Finning et al., 2004 (64)</td>
<td>283</td>
<td>NA</td>
<td>PCR multiplex temps réel</td>
<td>4 réplicats</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Minon et al., 2005 (66)</td>
<td>218</td>
<td>Caucasiennes, 13 couples d'origine africaine</td>
<td>PCR multiplex temps réel quantitative</td>
<td>Duplicat</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Zhou et al., 2005 (26)</td>
<td>98</td>
<td>82 Caucasiennes, 7 Africaines, 1 Asiatique, 9 inconnue</td>
<td>PCR dupplex temps réel</td>
<td>Duplicat</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Daniels et al., 2006 (28)</td>
<td>533</td>
<td>NA</td>
<td>PCR temps réel quantitative Multiplex</td>
<td>NA</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Dricot et al., 2006 (68)</td>
<td>70</td>
<td>Caucasiennes</td>
<td>PCR multiplex temps réel quantitative</td>
<td>Duplicats</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Exons 7, 10, et intron 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brojer et al., 2005 (25)</td>
<td>255 (25 non concluant)</td>
<td>NA</td>
<td>PCR temps réel quantitative</td>
<td>3 réplicats</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Exons 4, 5, 6, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finning et al., 2002 (22)</td>
<td>137</td>
<td>NA</td>
<td>PCR temps réel</td>
<td>Plusieurs réplicats</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
<tr>
<td>Exon 4,5, 7,10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyland et al., 2009 (71)</td>
<td>140 femmes RHD-1, dont 9 immunisées et 1 femme DVI variant</td>
<td>NA</td>
<td>PCR dupplex temps réel quantitative (4/10 et 5)</td>
<td>NA</td>
<td>ADN fœtal provenant du plasma maternel</td>
</tr>
</tbody>
</table>

NA : non applicable ; PCR : polymerase chain reaction ; ADN : acide désoxyribonucléique.

Plusieurs méthodes ont été décrites, afin de limiter les résultats faussement négatifs. La détection simultanée de deux séquences du génome est une des approches. Dans 14 études, l'utilisation de contrôle interne n'a pas été indiquée (31,37,59-63,67,69,72,73,75,77,78).

Dix-neuf études ont indiqué l'utilisation d'un témoin d'amplification de l'ADN, dont 14 l'utilisation plus particulière de marqueurs de l'ADN fœtal : SRY majoritairement et RASSFA1 dans une seule étude (Tableau 4) (71).
Tableau 4. Études avec marqueurs d’ADN fœtal.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Effectif des femmes</th>
<th>Age gestationnel</th>
<th>Type de PCR</th>
<th>Nombre de runs : duplicat, triplicat, etc.</th>
<th>Exon(s) testé(s)</th>
<th>Témoins de l’ADN I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randen et al., 2003 (23)</td>
<td>114</td>
<td>6-38 SA</td>
<td>PCR temps réel / PCR duplex fluorescente</td>
<td>2-5 réplicats</td>
<td>Exon 7</td>
<td>SRY</td>
</tr>
<tr>
<td>Rijnders et al., 2004 (24)</td>
<td>72</td>
<td>11-19 SA</td>
<td>PCR temps réel</td>
<td>NA</td>
<td>Exon 7</td>
<td>SRY, ALB</td>
</tr>
<tr>
<td>Nelson et al., 2001 (75)</td>
<td>60</td>
<td>9-34 SA</td>
<td>PCR</td>
<td>NA</td>
<td>Exon 10</td>
<td>SRY</td>
</tr>
<tr>
<td>Zhong et al., 2001 (61)</td>
<td>34</td>
<td>13-17 SA</td>
<td>PCR multiplex temps réel</td>
<td>NA</td>
<td>Exon 10</td>
<td>SRY avec détection simultanée SRY et RHD</td>
</tr>
<tr>
<td>Siva et al., 2003 (76)</td>
<td>28</td>
<td>15-17 SA</td>
<td>PCR</td>
<td>NA</td>
<td>Exon 7, 10</td>
<td>Bêtaglobine / SRY</td>
</tr>
<tr>
<td>Hromadnikova et al., 2005 (34)</td>
<td>45 immunisées ou non</td>
<td>11-40 SA</td>
<td>PCR multiplex temps réel quantitative</td>
<td>5 réplicats</td>
<td>Exon 7, 10</td>
<td>GLO gène / SRY</td>
</tr>
<tr>
<td>Hromadnikova et al., 2005 (35)</td>
<td>23 immunisées</td>
<td>11-37 SA</td>
<td>PCR multiplex temps réel quantitative</td>
<td>7 réplicats</td>
<td>Exon 7, 10</td>
<td>GLO gène / SRY</td>
</tr>
<tr>
<td>Finning et al., 2004 (64)</td>
<td>283</td>
<td>2ème T</td>
<td>PCR multiplex temps réel</td>
<td>4 réplicats</td>
<td>Exon 4, 5, 10</td>
<td>SRY / 8 insertions, délétion du polymorphisme</td>
</tr>
<tr>
<td>Minon et al., 2005 (66)</td>
<td>218 immunisées ou non</td>
<td>10-36 SA</td>
<td>PCR multiplex temps réel quantitative</td>
<td>Duplicat</td>
<td>Exon 4, 5, 10</td>
<td>SRY</td>
</tr>
<tr>
<td>Zhou et al., 2005 (26)</td>
<td>98</td>
<td>10-42 SA</td>
<td>PCR duplex temps réel</td>
<td>Duplicat</td>
<td>Exon 4, 5, 10</td>
<td>SRY / 8 polymorphismes</td>
</tr>
<tr>
<td>Daniels et al., 2006 (28)</td>
<td>533 (seuls 327 fœtus ont eu une sérologie postnatale)</td>
<td>10-36 SA</td>
<td>PCR temps réel quantitative Multiplex</td>
<td>NA</td>
<td>Exon 4, 5, 10</td>
<td>SRY / polymorphisme</td>
</tr>
<tr>
<td>Dricot et al., 2006 (68)</td>
<td>70</td>
<td>T1, T2, T3</td>
<td>PCR multiplex temps réel quantitative</td>
<td>Duplicat</td>
<td>Exon 4, 5, 10</td>
<td>SRY</td>
</tr>
<tr>
<td>Brojer et al., 2005 (25)</td>
<td>255</td>
<td>5-39 SA</td>
<td>PCR temps réel quantitative</td>
<td>3 réplicats</td>
<td>Exon 7, 10, intron 4</td>
<td>SRY / 11 polymorphismes/ gène bêta-actine</td>
</tr>
<tr>
<td>Hyland et al., 2009 (71)</td>
<td>140 femmes RHD-, mais 1 femme DVI variant, dont 9 immunisées</td>
<td>12-40 SA</td>
<td>PCR duplex temps réel quantitative</td>
<td>NA</td>
<td>Exon 4, 5, 7, 10</td>
<td>SRY / RASSFIA méthylation</td>
</tr>
</tbody>
</table>

NA : non applicable ; PCR : polymerase chain reaction ; SRY : Sex-determining Region of Y chromosome ; ALB : albumine ; SA : semaine d’aménorrhée ; RASSFIA.
I.1.2 **Examen de référence**

Lorsque la population étudiée était constituée de femmes de phénotype RH:-1 (D négatif) qui devaient subir un examen caryotypique, l'examen de référence pour la détermination RH1 était la PCR sur les amniocytes ou sur les cellules trophoblastiques (2 études). Dans la majorité des cas (20 cas), l'examen de référence était la détermination RH1 sur sérologie sanguine postnatale. Dans certaines études, l'examen de référence était la PCR sur cellules fœtales ou la sérologie sanguine postnatale (Tableau 9 en Annexe V).

I.1.3 **Standardisation de la technique et modalités d'interprétation des résultats**

Afin d'augmenter la fiabilité du test, une répétition des mesures par PCR nommée aussi nombre de « réplicats » est habituellement réalisée.

Vingt-quatre études ont indiqué avoir réalisé l'analyse en plusieurs réplicats : de 2 à 7 (Tableaux 1 à 3). Pour les autres études, il n'est pas possible de savoir si une analyse sur plusieurs réplicats a été réalisée et non rapportée ou n'a pas été réalisée (24,28,31,37,60-63,69-77).

Lorsque le nombre de répétition des mesures était indiqué, les modalités d'établissement du résultat définitif, issu de la combinaison de chacune des mesures, n'étaient pas homogènes.

Selon les études, l'établissement d'un statut RH1 (D positif) nécessitait la positivité de l'amplification :
- de la totalité des réplicats réalisés : $3 / 3$ (25,65);
- de la moitié des réplicats réalisés : 2 sur 4 (64,67), 1 sur 2 (59,66);
- d'un seul réplicat sur la totalité des mesures réalisées : 1 sur 5 (33,34), 1 sur 7 (35).

Mais parfois le nombre de réplicats était mentionné sans que ne soient précisées les modalités d'établissement du statut RH1 (D) (22,32,36,68) ou le processus d'interprétation était plus complexe, combinant à la fois les résultats de chacune des PCR réalisées avec leur nombre de réplicats. Rouillac-Le Sciellour et al. (59) ont considéré que le RH est positif, lorsque les 2 PCR étaient positives sur au moins un des 2 exons, pour Hyland et al. (71), le résultat était considéré positif si 2 des 4 réplicats de chacun des 3 exons et l'amplification de 3 réplicats d'un des exons RHD étaient positifs, un résultat était négatif si 11 des 12 réplicats n'étaient pas amplifiés, cet algorithme d'interprétation est celui qui a été décrit par Finning et al. (22). Minon et al. ont considéré que le fœtus était porteur du gène RHD si l'amplification concomitante des 3 exons était observée, en revanche, la définition du résultat négatif n'a pas été décrite dans la publication (66).

Le nombre de tests non concluants n'a pas été rapporté par toutes les études. Leurs motifs étaient divers : quantité d'ADN insuffisante (25,26,67,76,78), pas de confirmation postnatale du RH1 (28,33,63,64), présence de gènes variants (33,63,65,69,71), discordance des différents réplicats PCR (25), sans raison évoquée par l'auteur (64,69,71,77,81).
Les études publiées étaient destinées à valider la faisabilité de la technique. Si la PCR en temps réel semble être la technique la plus répandue, l'analyse de ces études indique l'absence de standardisation des procédures en termes d'exons testés, de témoins d'amplification et de contrôles utilisés, du nombre de tests réalisés et des modalités d'interprétation des résultats. Chacune des équipes a développé, mis au point et validé sa propre procédure.

Il est toutefois important de signaler les préconisations d'un groupe de travail mis en place suite aux recommandations de deux sociétés savantes : l'International Society of Blood Transfusion (ISBT) et le Comité international de standardisation en hématologie.

Les objectifs de ce groupe étaient notamment d'identifier les méthodes utilisées, d'établir la fiabilité et la performance des tests et d'établir un programme d'assurance qualité externe annuel. Depuis sa mise en place en 2004, ce groupe a publié les résultats de ses contrôles de qualité tous les deux ans.

À l'issue du premier contrôle, les recommandations portaient particulièrement sur la nécessité d'incorporer des contrôles adéquats : au moins un contrôle positif, un contrôle négatif, la réalisation du génotypage en duplicat en cas de recours à des PCR différentes, et l'inclusion d'un test pour le pseudogène RHDΨ.

Vingt-quatre laboratoires internationaux ont participé au travail la première année et 20 la seconde année. La PCR quantitative en temps réel a été la technique la plus utilisée, 2 exons étaient le plus souvent testés : exons 5, 7 ou 10, un seul exon dans un cas, et 15 laboratoires sur les 20 participant en 2006 ont utilisé le gène SRY comme témoin de l'ADN fœtal.
I.2 Résultats des tests

Des résultats de la performance de la détermination du génotype ont été présentés dans 31 articles (Tableaux en Annexe IV).

Il existait une hétérogénéité quant au nombre de femmes incluses dans chaque étude. Onze études ont inclus moins de 50 femmes (23,32-35,60-62,72,73,76), 17 études ont inclus entre 50 et 500 femmes (23-26,28,36,37,64-68,71,74,75,77,78). Quatre études seulement ont inclus plus de 500 femmes (59,63,69,70).

La majorité des études a été réalisée sur des femmes RH-1 (D négatif), non immunisées avec, pour 4 d'entre elles, l'inclusion de quelques femmes immunisées (33,34,66,71). Seules 3 études ont évalué la performance diagnostique du génotypage RH fœtal sur sang maternel sur une population de femmes déjà immunisées (35,59,60).

L’âge gestationnel de la détermination du RH1 fœtal a été très variable selon les études. La majorité des études a couvert les 3 trimestres (22,23,25,26,31-35,37,59,65,66,68-72,74,75,78). D'autres ont été réalisées au 2ᵉ/3ᵉ trimestre (60,62,63,67,77), au 2ᵉ trimestre exclusivement (24,64,76) et au 1ᵉ trimestre exclusivement pour une étude seulement (36). Pour une étude, cette information n’était pas fournie (28).

I.2.1 Performance diagnostique

Les sensibilités rapportées allaient de 31,2 % pour l’étude la plus ancienne (72) à 100 %. Le taux maximal a été relevé dans 15 études (22,24,25,33-37,62,65,66,68,71,73,77). La majorité des études (n = 22) a rapporté des sensibilités supérieures à 95 % (cf. Tableau 9 en Annexe IV).

Les spécificités rapportées variaient de 85 % à 100 %. Les spécificités maximales ont été relevées dans 15 études (22,25,32-36,61,64-67,71-73). Il est à noter que 22 études ont rapporté des spécificités d’au moins 95 %.

Les taux de performance diagnostique correspondant au nombre de résultats corrects, soit au taux de vrais positifs et vrais négatifs sur l’ensemble des tests concluants, variaient de 63 % pour l’étude la plus ancienne (72) à 100 %. Ce taux maximum a été rapporté dans 8 études (22,25,33-36,65,73).

Cinq études ont présenté des performances inférieures à 95 % (Tableau 5). Trois d'entre elles étaient anciennes et portaient sur des techniques particulières : amplification d'érythroblastes et ARN fœtal. Une autre a insisté sur l'absence de centralisation des traitements des prélèvements, et le fait que certains ont été acheminés tard ou risquaient de présenter des contaminations (76).
Tableau 5. Études, dont les taux de performance sont inférieures à 95 %.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Effectif des femmes</th>
<th>Age gestationnel</th>
<th>Type de PCR</th>
<th>Types d'exon</th>
<th>Témoins l'ADN fœtal</th>
<th>Nombre de test non concluants</th>
<th>VP</th>
<th>FP</th>
<th>VN</th>
<th>FN</th>
<th>Sensibilité</th>
<th>Spécificité</th>
<th>Performance diagnostique VP + VN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Mufti et al., 1998 (72)</td>
<td>35</td>
<td>6-40 SA</td>
<td>PCR érythroblastes</td>
<td>Exons 7/10</td>
<td>NA</td>
<td>NA</td>
<td>6</td>
<td>0</td>
<td>16</td>
<td>13</td>
<td>31,2 %</td>
<td>100 %</td>
<td>63 %</td>
</tr>
<tr>
<td>Al-Mufti et al., 1998 (72)</td>
<td>35</td>
<td>6-40 SA</td>
<td>PCR érythroblastes</td>
<td>Exons 7/10</td>
<td>NA</td>
<td>NA</td>
<td>12</td>
<td>0</td>
<td>16</td>
<td>7</td>
<td>63 %</td>
<td>100 %</td>
<td>80 %</td>
</tr>
<tr>
<td>Cunningham et al., 1999 (74)</td>
<td>96</td>
<td>Les 3 trimestres de la grossesse</td>
<td>PCR ARN fœtal sérum</td>
<td>Exon 10</td>
<td>NA</td>
<td>NA</td>
<td>38</td>
<td>6</td>
<td>34</td>
<td>18</td>
<td>67,8 %</td>
<td>85 %</td>
<td>75 %</td>
</tr>
<tr>
<td>Siva et al., 2003 (76)</td>
<td>28</td>
<td>15-17 SA</td>
<td>PCR ADN fœtal Plasma ou sérum</td>
<td>Exons 7,10</td>
<td>Bétaglobine/SRY</td>
<td>2 (ADN en quantité insuffisante pour PCR)</td>
<td>17</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>85 %</td>
<td>66,7 %</td>
<td>80,8 %</td>
</tr>
<tr>
<td>Zhou et al., 2005 (26)</td>
<td>98</td>
<td>10-42 SA</td>
<td>PCR duplex temps réel ADN fœtal Plasma</td>
<td>Exons 4, 5, 10</td>
<td>SRY/8 polymorphismes</td>
<td>NA</td>
<td>98</td>
<td>4</td>
<td>24</td>
<td>2</td>
<td>94,4 %</td>
<td>92,3 %</td>
<td>93,4 %</td>
</tr>
</tbody>
</table>

NA : non applicable ; PCR : polymerase chain reaction ; SRY : Sex-determining Region of Y chromosome ; SA : semaine d'aménorrhée ; ADN : acide désoxyribonucléique ; ARN : acide ribonucléique ; VP : vrai positif ; FP : faux positif ; VN : vrai négatif ; FN : faux négatif.
Une méta-analyse, publiée en 2006, a été identifiée. Elle a regroupé les résultats des études ayant inclus au moins 10 patientes (81). Les auteurs ont établi d'une part la performance sur les études ayant inclus plus de 10 patientes n'ayant bénéficié que d'un seul prélèvement et, d'autre part, la performance en ne conservant que les résultats exploitables, c'est-à-dire en excluant les résultats non concluants ou pour lesquels le matériel était jugé insuffisant. Les performances, ainsi estimées, étaient respectivement de 91,7 % et de 94,8 % (81). Les auteurs n'ont pas discuté l'aspect qualité des études, modalités de sélection des patientes, origine ethnique, modalités d'interprétation des résultats, aussi ces résultats doivent-ils être considérés avec précaution.

L'analyse des études, dont la performance n'était pas de 100 %, a montré que ces résultats étaient liés :
- exclusivement à des résultats faussement négatifs dans 616 cas : (31,32,61,64,72) ;
- exclusivement à des résultats faussement positifs dans 6 cas (24,37,62,67,68,77), l'origine ethnique des patientes n'était précisée que dans 2 cas (37,77) ; il s'agissait de patientes caucasienes.

Des résultats à type de faux négatifs ont été rapportés dans 16 études (Tableau 6). Les 2 études, qui ont rapporté un nombre important de résultats faussement négatifs, 13 (72) et 18 (74) respectivement, étaient des études anciennes menées en 1998 et 1999. L'une avait été réalisée à partir d'érythroblastes et la seconde sur de l'ARN fœtal. Les explications proposées par les auteurs étaient que les noyaux fœtaux étaient peu importants dans les érythroblastes fœtaux, et que l'ARN n'était pas présent dans les échantillons prélevés. Pour les autres études rapportant des résultats faussement négatifs, le taux restait faible dans la majorité des cas. Parmi les motifs proposés par les auteurs figuraient : le traitement tardif des échantillons (au-delà de 14 jours, (69)), la conservation des échantillons à température ambiante ou une quantité insuffisante d'ADN fœtal (70). Bischoff \textit{et al.}, dans leur étude rétrospective, indiquaient que l'impact de la congélation et décongélation des échantillons pouvait être une explication (60).

L'absence d'indication d'utilisation de témoins d'extraction fœtale dans certaines séries, ne facilite pas l'analyse des facteurs explicatifs (31,59-61,63,69,72,78).

16 L'article d'Al-Mufti (72) présente 2 procédures étudiées.
Tableau 6. Études rapportant des résultats faussement négatifs.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Effectif des femmes</th>
<th>Age gestationnel</th>
<th>Type de PCR</th>
<th>Types d'exon</th>
<th>Témoins d'ADN</th>
<th>VP</th>
<th>FP</th>
<th>VN</th>
<th>FN</th>
<th>Sensibilité</th>
<th>Spécificité</th>
<th>Performance diagnostique VP + VN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Mufti et al., 1998 (72)</td>
<td>35</td>
<td>6-40 SA</td>
<td>PCR érythroblastes</td>
<td>Exon 7/10</td>
<td>NA</td>
<td>6</td>
<td>0</td>
<td>16</td>
<td>13</td>
<td>31,2 %</td>
<td>100 %</td>
<td>63 %</td>
</tr>
<tr>
<td>Al-Mufti et al., 1998 (72)</td>
<td>35</td>
<td>6-40 SA</td>
<td>PCR érythroblastes</td>
<td>Exons7/10</td>
<td>NA</td>
<td>12</td>
<td>0</td>
<td>16</td>
<td>7</td>
<td>63 %</td>
<td>100 %</td>
<td>80 %</td>
</tr>
<tr>
<td>Lo et al., 1998 (31)</td>
<td>57</td>
<td>7-41 SA</td>
<td>PCR temps réel ADN fœtal Plasma</td>
<td>Exon 10</td>
<td>NA</td>
<td>37</td>
<td>0</td>
<td>18</td>
<td>2 (8 et 9 SA)</td>
<td>94,8 %</td>
<td>90 %</td>
<td>96,5 %</td>
</tr>
<tr>
<td>Bishoff et al., 1999 (60)</td>
<td>20 patientes immunisées17</td>
<td>15-36 SA</td>
<td>PCR conventionnelle / PCR temps réel fluorescente ADN fœtal sérum</td>
<td>Exon 7</td>
<td>NA</td>
<td>14</td>
<td>NA</td>
<td>6</td>
<td>70 %</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Cunningham et al., 1999 (74)</td>
<td>96</td>
<td>De T1 à T3</td>
<td>PCR ARN fœtal sérum</td>
<td>Exon 10</td>
<td>NA</td>
<td>38</td>
<td>6</td>
<td>34</td>
<td>18</td>
<td>67,8 %</td>
<td>85 %</td>
<td>75 %</td>
</tr>
<tr>
<td>Zhong et al., 2001 (61)</td>
<td>34</td>
<td>13-17 SA</td>
<td>PCR multiplex temps réel ADNf Plasma</td>
<td>Exon 10 SRY avec détection simultanée SRY et RHD</td>
<td>26</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>96,3 %</td>
<td>100 %</td>
<td>97 %</td>
<td></td>
</tr>
<tr>
<td>Siva et al., 2003 (76)18</td>
<td>28</td>
<td>15-17 SA</td>
<td>PCR ADN fœtal Plasma ou sérum</td>
<td>Exons 7,10</td>
<td>Bétaglobine / SRY</td>
<td>17</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>85 %</td>
<td>66,7 %</td>
<td>80,8 %</td>
</tr>
<tr>
<td>Turner et al., 2003 (32)</td>
<td>31</td>
<td>6-20 SA</td>
<td>PCR temps réel ADN fœtal sang total</td>
<td>Exon 10 gène bêta-actine (ACTB)</td>
<td>0</td>
<td>14</td>
<td>319</td>
<td>82,3 %</td>
<td>100 %</td>
<td>90,3 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17 Femmes porteuses exclusivement de fœtus RH:1 (D positif).
18 Deux résultats non concluants : 2 prélèvements pas d'ADN en quantité suffisante pour amplification.
19 Ces trois résultats faussement négatifs ont été constatés sur des prélèvements effectués à 9, 17 et 19 SA.
Tableau 6 (suite). Études rapportant des résultats faussement négatifs.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Effectif des femmes</th>
<th>Age gestationnel</th>
<th>Type de PCR</th>
<th>Types d'exon</th>
<th>Témoins d'ADN</th>
<th>VP</th>
<th>FP</th>
<th>VN</th>
<th>FN</th>
<th>Sensibilité</th>
<th>Spécificité</th>
<th>Performance diagnostic VP + VN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rouillac-Le Sciellour et al., 2004 (59)</td>
<td>545 femmes immunisées<sup>20</sup> 194 Caucasiennes et Asiatiques</td>
<td>7-40 SA</td>
<td>PCR temps réel quantitative / PCR conventionnelle ADN fœtal Plasma</td>
<td>Exons 7,10</td>
<td>NA</td>
<td>444</td>
<td>2</td>
<td>96</td>
<td>3</td>
<td>99,3 %</td>
<td>98 %</td>
<td>99 %</td>
</tr>
<tr>
<td>Rouillac-Le Sciellour et al., 2004 (59)</td>
<td>306 femmes non immunisées<sup>21</sup> 210 Caucasiennes et Asiatiques</td>
<td>7-40 SA</td>
<td>PCR temps réel quantitative/PCR conventionnelle ADN fœtal Plasma</td>
<td>Exons 7,10</td>
<td>NA</td>
<td>205</td>
<td>3</td>
<td>100</td>
<td>1</td>
<td>99,5 %</td>
<td>97 %</td>
<td>98,7 %</td>
</tr>
<tr>
<td>Van der Schoot et al., 2004 (63)</td>
<td>1 257<sup>22</sup> 409 Caucasiennes : 263, Africaines : 21, Asiatiques : 1, Inconnues : 76</td>
<td>28-30 SA</td>
<td>PCR temps réel ADN fœtal Plasma</td>
<td>Exon 7</td>
<td>NA</td>
<td>NA</td>
<td>5</td>
<td>NA</td>
<td>7</td>
<td>NA</td>
<td>NA</td>
<td>99,1 %</td>
</tr>
<tr>
<td>Finning et al., 2004 (64)<sup>23</sup></td>
<td>283 122 208 Traficées</td>
<td>4<sup>25</sup> T</td>
<td>PCR multiplex temps réel ADN fœtal Plasma</td>
<td>Exons 4,5, 10</td>
<td>SRY / Présence ou absence de 8 insertions, délétion du polymorphisme</td>
<td>147</td>
<td>0</td>
<td>76</td>
<td>3</td>
<td>98 %</td>
<td>100 %</td>
<td>98,6 %</td>
</tr>
<tr>
<td>Zhou et al., 2005 (26)</td>
<td>98 86 Caucasiennes : 82, Africaines : 7, Asiatique : 1, Inconnues : 9</td>
<td>10 -42 SA</td>
<td>PCR duplex temps réel ADN fœtal Plasma</td>
<td>Exons 4, 5, 10</td>
<td>SRY / 8 polymorphismes</td>
<td>98</td>
<td>4</td>
<td>24</td>
<td>2</td>
<td>94,4 %</td>
<td>92,3 %</td>
<td>93,4 %</td>
</tr>
<tr>
<td>Machado et al., 2006 (78)</td>
<td>81 74 Européennes, Africaines, Indigènes</td>
<td>4-41 SA (15 T1, 37 T2, 29 T3)</td>
<td>PCR conventionnelle ADN fœtal Plasma</td>
<td>Exon 10, intron 4</td>
<td>NA</td>
<td>58</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>98,3 %</td>
<td>93,7 %</td>
<td>97,3 %</td>
</tr>
</tbody>
</table>

²⁰ 42 femmes (4 %) exclues car gène RHDΨ ou hybride ou non fonctionnel.
²¹ 42 femmes (4 %) exclues car gène RHDΨ ou hybride ou non fonctionnel.
²² 2 359 initialement prévues, seulement 1 267 fœtus ont eu une sérologie postnatale.
²³ Parmi les résultats non concluants : 50 génotypes en attente de confirmation et 7 génotypes non concluants.
Tableau 6 (fin). Études rapportant des résultats faussement négatifs.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Effectif des femmes</th>
<th>Age gestationnel</th>
<th>Type de PCR</th>
<th>Types d’exon</th>
<th>Témoins d’ADN</th>
<th>VP</th>
<th>FP</th>
<th>VN</th>
<th>FN</th>
<th>Sensibilité</th>
<th>Spécificité</th>
<th>Performance diagnostique VP + VN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniels et al., 2006 (28)</td>
<td>533<sup>24</sup></td>
<td>NA</td>
<td>PCR temps réel quantitative</td>
<td>Exons 4, 5, 10</td>
<td>SRY / Polymorphisme</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>99,4 %</td>
</tr>
<tr>
<td></td>
<td>1 869<sup>26</sup></td>
<td></td>
<td>Multiplex ADN fœtal Plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finning et al., 2008 (69)<sup>25</sup></td>
<td>25<sup>25</sup></td>
<td>8-38 SA</td>
<td>PCR temps réel quantitative</td>
<td>Exons 5,7</td>
<td>NA</td>
<td>118</td>
<td>14</td>
<td>670</td>
<td>3</td>
<td>99,7 %</td>
<td>98 %</td>
<td>95,7 %</td>
</tr>
<tr>
<td></td>
<td>1 997 femmes prévues : exclusion de 128 fœtus sans sérologies postnatales.</td>
<td></td>
</tr>
<tr>
<td>Müller et al., 2008 (70)</td>
<td>1 022<sup>27</sup></td>
<td>6-32 SA</td>
<td>PCR duplex temps quantitative</td>
<td>Exons 5,7</td>
<td>Bêtaglobine</td>
<td>660</td>
<td>2</td>
<td>357</td>
<td>3</td>
<td>99,7 %</td>
<td>99,2 %</td>
<td>99,2 %</td>
</tr>
</tbody>
</table>

NA : non applicable ; PCR : *polymerase chain reaction* ; SRY : *Sex-determining Region of Y chromosome* ; SA : semaine d'aménorrhée ; ADN : acide désoxyribonucléique ; VP : vrai positif ; FP : faux positif ; VN : vrai négatif ; FN : faux négatif.

²⁴ Seuls 327 fœtus ont eu une sérologie postnatale.
²⁵ Parmi les résultats non concluants : 8 Génotypes variants (Exon 7 + et Exon 5) et 56 génotypes non concluants (3,4 %).
²⁶ Parmi les résultats non concluants : exclusion de 128 fœtus sans sérologies postnatales.
²⁷ Parmi les résultats non concluants : exclusion de 5 patientes avec variants et 23 problèmes de sérums. 1 085 patientes dont une avec *RHDV*. Exclusion de 63 fœtus sans sérologies.
Malgré la pratique de tests sur plusieurs exons, certaines études ont rapporté des résultats faussement positifs. Le nombre de résultats faussement positifs était plus ou moins important : de 1 ou 2 faux positifs (28,37,59,62,67,68,70,76,78), de 3 à 6 faux positifs (26,63,74,77) jusqu’à 14 faux positifs rapportés par Finning et al. en 2008 (69). Tous les auteurs ont conclu que leur existence était due soit à la présence de gènes variants, soit à une contamination par de l’ADN exogène (76).

Il est évident, en termes de pratique clinique, que les résultats faussement négatifs ont un impact beaucoup plus important, puisque ces femmes ne bénéficieront pas d’immunoprophylaxie, et pourront donc potentiellement développer une allo-immunisation fœto-maternelle. Les résultats faussement positifs entraîneront pour leur part, une injection inutile d’anti-RH1.

Sur le plan du contrôle de qualité des laboratoires réalisant ces tests, il est à noter la publication de plusieurs bilans :

- vingt laboratoires ont participé récemment au génotypage RHD fœtal chez des femmes RH:-1 (D négatif), lors d’un atelier de travail organisé par le groupe de travail européen (SAFE network) (82). Dix-neuf laboratoires ont donné des résultats corrects sur les cas de RH:1 (D positif), et un faux négatif a été relevé. Pour les cas de RH:-1 (D négatif), 19 résultats ont été correctement établis, mais seuls 6 ont mentionné la présence de SRY comme témoin, un faux positif a été relevé ;

- depuis 2001, l’International Blood Group Reference Laboratory (IBGRL) a collecté et testé plus de 1 400 échantillons de grossesses, avec détermination du RH1 (D) fœtal sur sang maternel. Seulement 4 résultats faussement positifs et 2 faussement négatifs ont été enregistrés (83) ;

- dans le cadre de la seconde réunion du groupe de travail international sur le génotypage des groupes sanguins (84), 20 laboratoires ont participé au contrôle de qualité externe sur sang maternel : 9 laboratoires participant sur 20 ont rendu des résultats faussement positifs chez des mères ou des fœtus ayant un gène RHDΨ.

Pour les prélèvements qui concernaient des femmes RH:-1 enceintes de fœtus RH:1, 18 laboratoires ont rendu des résultats corrects, et un seul laboratoire a présenté un résultat faussement négatif chez un fœtus de sexe féminin de génotype RHD.

Pour les prélèvements issus de femmes RH:-1 enceintes de fœtus de sexe féminin de génotype RHD.

Pour les prélèvements issus de femmes RH:-1 enceintes de fœtus RH:-1, 19 laboratoires ont rendu des résultats corrects, et un seul a rendu un résultat faussement positif. Il a été demandé à ces laboratoires participant au contrôle de préciser s’ils réalisaient ce test de manière routinière ou en activité de recherche : 15 ont déclaré réaliser ce test de façon routinière et 5 en activité de recherche.
Tableau 7. Études rapportant des résultats faussement positifs.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Population</th>
<th>Age gestationnel</th>
<th>Type de PCR</th>
<th>Types d'exon</th>
<th>Témoins de l'ADN fœtal SRY (masculin)</th>
<th>VP</th>
<th>FP</th>
<th>VN</th>
<th>FN</th>
<th>Sensibilité</th>
<th>Spécificité</th>
<th>Performance diagnostique VP + VN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cunningham et al., 1999 (74)</td>
<td>96</td>
<td>Les 3 trimestres de la grossesse</td>
<td>PCR ARNf sérum</td>
<td>Exon 10</td>
<td>NA</td>
<td>38</td>
<td>6</td>
<td>34</td>
<td>18</td>
<td>67,8 %</td>
<td>85 %</td>
<td>75 %</td>
</tr>
<tr>
<td>Johnson et al., 2003 (62)</td>
<td>47</td>
<td>18-40 SA</td>
<td>PCR conventionnelle / PCR temps réel</td>
<td>Exons 4, 5,10, multiexons</td>
<td>NA</td>
<td>36</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>100 %</td>
<td>91 %</td>
<td>97,9 %</td>
</tr>
<tr>
<td>Siva et al., 2003 (76)</td>
<td>28</td>
<td>15-17 SA</td>
<td>PCR ADNf Plasma ou sérum</td>
<td>Exons 7,10</td>
<td>Bétaglobine/SRY</td>
<td>17</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>85 %</td>
<td>66,7 %</td>
<td>80,8 %</td>
</tr>
<tr>
<td>Rouillac-Le Sciellour et al., 2004 (59)</td>
<td>545 femmes immunisées28 Caucasiennes et Asiatiques</td>
<td>7-40 SA</td>
<td>PCR temps réel quantitative /PCR conventionnelle ADNf Plasma</td>
<td>Exons 7,10</td>
<td>NA</td>
<td>444</td>
<td>2</td>
<td>96</td>
<td>3</td>
<td>99,3 %</td>
<td>98 %</td>
<td>99 %</td>
</tr>
<tr>
<td>Rouillac-Le Sciellour et al., 2004 (59)</td>
<td>306 femmes non immunisées29 Caucasiennes et asiatiques</td>
<td>7-40 SA</td>
<td>PCR temps réel quantitative /PCR conventionnelle ADNf Plasma</td>
<td>Exons 7,10</td>
<td>NA</td>
<td>205</td>
<td>3</td>
<td>100</td>
<td>1</td>
<td>99,5 %</td>
<td>97 %</td>
<td>98,7 %</td>
</tr>
<tr>
<td>Van der Schoot et al., 2004 (63)</td>
<td>1 257 femmes30</td>
<td>28-30 SA</td>
<td>PCR temps réel ADNf Plasma</td>
<td>Exon 7</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>5</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>99,1 %</td>
</tr>
</tbody>
</table>

28 42 femmes (4%) exclues, car gène RHDΨ ou hybride ou non fonctionnel.
29 42 femmes (4%) exclues, car gène RHDΨ ou hybride ou non fonctionnel.
30 2 359 patientes initialement prévues, mais pour 15 patientes avec variant, il n'y a pas eu de génotypage, et 1 267 fœtus n'ont pas eu de sérologie postnatale.
Tableau 7 (suite). Études rapportant des résultats faussement positifs.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Population</th>
<th>Age gestationnel</th>
<th>Type de PCR</th>
<th>Types d’exon</th>
<th>Témoins de l’ADN fœtal SRY (masculin)</th>
<th>VP</th>
<th>FP</th>
<th>VN</th>
<th>FN</th>
<th>Sensibilité</th>
<th>Spécificité</th>
<th>Performance diagnostique VP + VN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rijnders et al., 2004 (24)</td>
<td>72</td>
<td>11-19 SA</td>
<td>PCR temps réel ADNf Plasma</td>
<td>Exon 7</td>
<td>SRY, ALB</td>
<td>43</td>
<td>1</td>
<td>29</td>
<td>0</td>
<td>100 %</td>
<td>96,5 %</td>
<td>98,6 %</td>
</tr>
<tr>
<td>Zhou et al., 2005 (26)</td>
<td>82</td>
<td>10 SA à 42 SA</td>
<td>PCR duplex temps réel ADNf Plasma</td>
<td>Exons 4, 5, 10</td>
<td>SRY / 8 polymorphismes</td>
<td>98</td>
<td>4</td>
<td>24</td>
<td>2</td>
<td>94,4 %</td>
<td>92,3 %</td>
<td>93,4 %</td>
</tr>
<tr>
<td>Banch Clausen et al., 2005 (67)</td>
<td>56</td>
<td>15-36 SA</td>
<td>PCR temps réel quantitative ADNf Plasma</td>
<td>Exons 7,10</td>
<td>NA</td>
<td>NA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>94,7 %</td>
<td>100 %</td>
<td>NA</td>
</tr>
<tr>
<td>Machado et al., 2006 (78)</td>
<td>81</td>
<td>4-41 SA</td>
<td>PCR conventionnelle ADNf Plasma</td>
<td>Exon 10, Intron 4</td>
<td>NA</td>
<td>58</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>98,3 %</td>
<td>93,7 %</td>
<td>97,3 %</td>
</tr>
<tr>
<td>Daniels et al., 2006 (28)</td>
<td>32731</td>
<td>NA</td>
<td>PCR temps réel quantitative multiplex ADNf Plasma</td>
<td>Exons 4, 5,10</td>
<td>SRY / Polymorphisme</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>99,4 %</td>
</tr>
<tr>
<td>Dricot et al., 2006 (68)</td>
<td>70</td>
<td>De T1 à T3</td>
<td>PCR multiplex temps réel quantitative ADNf Plasma</td>
<td>Exons 4,5,10</td>
<td>SRY</td>
<td>46</td>
<td>1</td>
<td>23</td>
<td>0</td>
<td>100 %</td>
<td>95,8 %</td>
<td>98,6 %</td>
</tr>
<tr>
<td>Dif-Couvreux et al., 2006 (77)</td>
<td>99</td>
<td>15-40 SA</td>
<td>PCR nichée conventionnelle ADNf Plasma</td>
<td>Exons 4,10</td>
<td>NA</td>
<td>68</td>
<td>4</td>
<td>26</td>
<td>0</td>
<td>100 %</td>
<td>86,7 %</td>
<td>95 %</td>
</tr>
</tbody>
</table>

31 533 femmes initialement prévues, seuls 327 fœtus ont eu une sérologie postnatale.
Tableau 7 (fin). Études rapportant des résultats faussement positifs.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Population</th>
<th>Age gestationnel</th>
<th>Type de PCR</th>
<th>Types d’exon</th>
<th>Témoins de l’ADN fœtal</th>
<th>VP</th>
<th>FP</th>
<th>VN</th>
<th>FN</th>
<th>Sensibilité</th>
<th>Spécificité</th>
<th>Performance diagnostique VP + VN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rouillac et al., 2007 (37)</td>
<td>300 (310 échantillons)</td>
<td>10-34 SA</td>
<td>PCR temps réel quantitative ADNf/Plasma</td>
<td>Exons 7/10</td>
<td>NA</td>
<td>229</td>
<td>2</td>
<td>79</td>
<td>0</td>
<td>100 %</td>
<td>97,5 %</td>
<td>99,4 %</td>
</tr>
<tr>
<td>Finning et al., 2008 (69)</td>
<td>1 869 femmes (32)</td>
<td>8-38 SA</td>
<td>PCR temps réel quantitative ADNf/Plasma</td>
<td>Exons 5,7</td>
<td>NA</td>
<td>1 118</td>
<td>14</td>
<td>670</td>
<td>3</td>
<td>99,7 %</td>
<td>98 %</td>
<td>95,7 %</td>
</tr>
<tr>
<td>Müller et al., 2008 (70)</td>
<td>1 085 femmes (33 34)</td>
<td>6-32 SA</td>
<td>PCR duplex temps réel quantitative ADNf/Plasma</td>
<td>Exons 5,7</td>
<td>Bêtaglobine</td>
<td>660</td>
<td>2</td>
<td>357</td>
<td>3</td>
<td>99,7 %</td>
<td>99,2 %</td>
<td>99,2 %</td>
</tr>
</tbody>
</table>

NA : non applicable ; PCR : polymerase chain reaction ; SRY : Sex-determining Region of Y chromosome ; SA : semaine d’aménorrhée ; ADN : acide désoxyribonucléique ; VP : vrai positif ; FP : faux positif ; VN : vrai négatif ; FN : faux négatif.

32 1 997 initialement prévues, exclusion de 128 fœtus sans sérologies postnatales.
33 1 113 initialement prévues : exclusion de 5 patientes avec variants et 23 problèmes de sérum.
34 Une patiente avec RHDΨ. Exclusion de 63 fœtus sans sérologies. Étude sur 1 022 patientes.
I.2.2 Résultats des études pour le 1er trimestre

Il existe 13 études dans lesquelles les prélèvements ont été réalisés à partir du 1er trimestre. Parmi elles, 5 ne rapportaient pas la sensibilité ni la spécificité du test au 1er trimestre (23,25,32,66,71).

Si seules les 8 études ayant rapporté la performance du test sont retenues (22,31,36,59,68,72,74,78) :

a. six études (22,31,68,72,74,78) ont inclus entre 10 et 23 femmes, et ont rapporté une sensibilité entre 28,5 % et 100 %. Deux études ont rapporté 100 % de sensibilité (22,68) avec une spécificité entre 77,8 % et 100 % ;

b. une étude, réalisée sur un échantillon de 104 femmes, a rapporté une sensibilité de 97,8 % et une spécificité de 92,3 %, avec un résultat faussement positif et 2 résultats faussement négatifs pour des prélèvements effectués entre 9-11 SA, probablement en raison d’une faible concentration en ADN fœtal (59) ;

c. seule une étude a été réalisée spécifiquement au 1er trimestre de la grossesse (36). Il s’agissait de 106 femmes RH:-1 (D négatif) prélevées entre 8 et 14 SA qui devaient avoir un caryotype pour un risque génétique ou chromosomique. La détermination du génotype fœtal a été réalisée à partir du sérum maternel par une PCR duplex temps réel sur l’exon 10 pour le gène RHD et sur le gène SOD (superoxyde dismutase), témoin de l’amplification de l’ADN fœtal. Quatre femmes ont été exclues, car une confirmation du RH1 postnatal n’a pas pu être effectuée en raison d’une interruption de grossesse. Sur 102 femmes, la sensibilité et la spécificité ont été de 100 %. Il est à noter que cette étude ne précisait pas l’origine ethnique des femmes.

Sur ces 8 études, une étude réalisée à partir d’érythroblastes fœtaux a comparé la performance de la détermination effectuée au 1er trimestre versus celle réalisée au 2e / 3e trimestre, et conclut à une meilleure performance au 1er trimestre en raison de la présence plus importante d’ARN dans les érythroblastes jeunes (72). Lo et al. en 1998, dans une même étude, retrouvaient au 1er trimestre une sensibilité de 77,8 % correspondant à 2 faux négatifs à 8 SA et à 9 SA, avec une spécificité de 100 %, alors qu’ils retrouvaient une concordance parfaite quand cette détermination était réalisée aux 2e et 3e trimestres (31).

La méta-analyse de Geifman-Holtzman et al. (81), sur le sous-groupe de 240 femmes prélevées au 1er trimestre, a rapporté une performance totale du test de 90,8 %. Les auteurs ont de plus comparé la performance globale de la détermination RH1 (D) selon les différents trimestres de grossesse. Lorsque la performance au 1er trimestre était comparée à celle au 2e ou 3e trimestre, il existait une différence significative (0,041) alors qu’il n’existait pas de différence dans la détermination RH1 (D) entre le 2e et le 3e trimestre (p > 0,05). En effet, la performance globale au 1er trimestre était de 90,8 % (86,3 %-94 %), de 85 % (81,1 % -88.2 %) au 2e trimestre et de 85,3 % (80,4 % -89,2 %) au 3e trimestre.

Ces résultats, compte tenu de l’hétérogénéité des études, mériteraient d’être validés.

Au vu de la littérature, peu d’auteurs ont étudié la performance de la détermination du RH1 fœtal au 1er trimestre. Si l’on tient compte des 2 seules études (36,59) qui ont inclus plus de 100 femmes, la sensibilité rapportée était de 97,8 % et 100 % et la spécificité de 92,3 % et 100 %. La réalisation de la détermination du génotype RHD fœtal apparaît possible à partir de la 11 SA.
<table>
<thead>
<tr>
<th>Auteurs</th>
<th>Effectif des femmes</th>
<th>Age gestationnel</th>
<th>Type de PCR</th>
<th>Nombre de runs : duplicat, triplicat, etc.</th>
<th>Types d'exon</th>
<th>Témoins de la procédure</th>
<th>VP</th>
<th>FP</th>
<th>VN</th>
<th>FN</th>
<th>Sensibilité</th>
<th>Spécificité</th>
<th>Performance diagnostique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Mufti et al., 1998</td>
<td>10</td>
<td>6-14 SA</td>
<td>PCR ADN</td>
<td>NA</td>
<td>Exons 7/10</td>
<td>NA</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4/8 = 50 %</td>
<td>2/2 = 100 %</td>
<td>6/10 = 60 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Erythrocytes fœtaux</td>
<td></td>
</tr>
<tr>
<td>Al-Mufti et al., 1998</td>
<td>10</td>
<td>6-14 SA</td>
<td>PCR ARN</td>
<td>NA</td>
<td>Exons 7/10</td>
<td>NA</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>6/8 = 75 %</td>
<td>2/2 = 100 %</td>
<td>8/10 = 80 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Erythrocytes fœtaux</td>
<td></td>
</tr>
<tr>
<td>Lo et al., 1998</td>
<td>12</td>
<td>7-14 SA</td>
<td>PCR temps réel</td>
<td>NA</td>
<td>Exon 10</td>
<td>NA</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>7/9 = 77,8 %</td>
<td>3/3 = 100 %</td>
<td>10/12 = 83,4 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADNf plasma</td>
<td></td>
</tr>
<tr>
<td>Cunningham et al., 1999</td>
<td>23</td>
<td>1er T</td>
<td>PCR ADN</td>
<td>NA</td>
<td>Exon 10</td>
<td>NA</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>4/14 = 28,5 %</td>
<td>7/9 = 77,8 %</td>
<td>11/23 = 47,8 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADNf plasma</td>
<td></td>
</tr>
<tr>
<td>Finning et al., 2002</td>
<td>19</td>
<td>1er T</td>
<td>PCR temps réel</td>
<td>Plusieurs réplicats</td>
<td>Exons 4, 5, 6, 10</td>
<td>NA</td>
<td>13</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>100 %</td>
<td>100 %</td>
<td>19/19 = 100 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADNf sérum</td>
<td></td>
</tr>
<tr>
<td>Costa et al., 2002</td>
<td>106</td>
<td>8-14 SA</td>
<td>PCR duplex temps réel (RHD et SOD) ADNf sérum</td>
<td>Duplicat</td>
<td>Exon 10</td>
<td>Gène Superoxide (SOD) 62</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>100 %</td>
<td>100 %</td>
<td>102/102=100 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sérum</td>
<td></td>
</tr>
<tr>
<td>Rouillac-Le Scielour et al., 2004</td>
<td>104 femmes immunisées</td>
<td>7-14 SA</td>
<td>PCR Temps réel / PCR conventionnelle ADNf sérum</td>
<td>Duplicat (PCR conventionnelle : 1, PCR temps réel : 1)</td>
<td>Exons 7, 10</td>
<td>NA</td>
<td>89</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>89/91 = 97,8 %</td>
<td>12/13=92,3 %</td>
<td>101/104=97,1%</td>
</tr>
</tbody>
</table>

Analyse prospective sur 893 femmes, 42 femmes ont été exclues, car gène RHDΨ ou hybride ou non fonctionnel.
Tableau 8 (suite). Études présentant des résultats pour le premier trimestre.

<table>
<thead>
<tr>
<th>Auteurs</th>
<th>Effectif des femmes</th>
<th>Age gestationnel</th>
<th>Type de PCR</th>
<th>Nombre de runs : duplicat, triplicat, etc.</th>
<th>Types d’exon</th>
<th>Témoins de la procédure</th>
<th>VP</th>
<th>FP</th>
<th>VN</th>
<th>FN</th>
<th>Sensibilité</th>
<th>Spécificité</th>
<th>Performance diagnostique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machado et al., 2006 (78)</td>
<td>15 Européennes, Africaines, Indigènes</td>
<td>1er T</td>
<td>PCR ADNf plasma</td>
<td>NA</td>
<td>Exons 10, intron 4</td>
<td>NA</td>
<td>58</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>58/29=98,3 %</td>
<td>15/16=93,7 %</td>
<td>73/75=97,3</td>
</tr>
<tr>
<td>Dricot et al., 2006 (68)</td>
<td>10 Caucasiennes</td>
<td>1er T</td>
<td>PCR multiplex temps réel ADNf plasma</td>
<td>Duplicat</td>
<td>Exons 4, 5, 10</td>
<td>SRY</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

NA : non applicable ; PCR : polymerase chain reaction ; SRY : Sex-determining Region of Y chromosome ; SA : semaine d’aménorrhée ; ADN : acide désoxyribonucléique ; ARN : acide ribonucléique ; VP : vrai positif ; FP : faux positif ; VN : vrai négatif ; FN : faux négatif.
I.2.3 Validité des résultats

Dans la mesure où certains auteurs n'ont pas pris en compte les tests considérés comme non concluants dans le calcul de la performance diagnostique, ces taux sont probablement surestimés. En effet, le taux réel de la performance diagnostique devrait être calculé sur l'ensemble des tests réalisés, et inclure aussi dans le dénominateur les résultats des tests non concluants.

Dans la plupart des études, l'ethnie n'était pas une donnée précisée, laissant suspecter que l'existence de variant n'a pu être correctement identifiée avec, en conséquence, la possibilité de sous-estimation du nombre de résultats faussement positifs venant potentiellement modifier la performance globale du test. Lorsque l'ethnie était précisée, il s'agissait dans la majorité des cas de populations caucasiennes (35,65,68,77), ce qui restreint la validité externe du test. Cinq études ont été réalisées de manière certaine en population mixte (26,59,66,69,78) et aucune étude n'a été réalisée en population africaine exclusive.

D'autre part, un nombre important d'études a été réalisé sur une population sélectionnée non représentative de la population générale, puisqu'il s'agissait de patientes RH:-1 (D négatif) qui avaient une indication de caryotype et donc à haut risque d'anomalie chromosomique (24,31,36,59,61,65,74,77,85). Or, certaines anomalies chromosomiques comme la trisomie 21 ont été décrites comme pouvant entraîner un taux d’ADN fœtal plus important dans la circulation maternelle, ce qui augmenterait ainsi la sensibilité du test (86).

Une étude a déterminé le RH1 fœtal sur des populations hyper sélectionnées, c'est-à-dire sur des femmes RH:-1 (D négatif) uniquement porteuses de fœtus RH:1 (D positif) (60), ce qui diminue la validité externe du test puisque d'emblée la source de faux négatif est éliminée.

Une étude (33) a sélectionné des patientes RH : -1 (D négatif), dont 4 présentaient un statut RH:W1 (D) (D faible) antérieurement connu, ce qui vient là aussi biaiser les résultats et diminue la validité externe du test.

Les résultats des études de faisabilité de la technique ont indiqué des sensibilités et des spécificités supérieures à 95 % dans 22 cas, et les performances diagnostiques ont atteint 100 % dans 8 cas. Deux études, réalisées au premier trimestre incluant plus de 100 femmes, ont rapporté une sensibilité de la détermination du RHD fœtal sur sang maternel de 100 %, lorsque le test était réalisé après 11 SA.

L'absence de prise en compte des résultats non concluants et le manque de représentativité des populations incluses (origine ethnique, population plus à risque d'anomalie chromosomique) pourraient être à l'origine d'une surestimration de la performance diagnostique.

Il est important de souligner que les travaux d'assurance qualité du groupe de travail de l'International Society of Blood Transfusion (ISBT), publiés régulièrement, viennent étayer ces performances satisfaisantes, mais toujours améliorables des tests utilisés.

I.3 Utilisation en pratique clinique

Quelques auteurs ont publié leur expérience de mise en œuvre de leur procédure à plus large échelle.
Finning *et al.* (69) ont rapporté leur expérience d'utilisation au Royaume-Uni, du génotypage fœtal *RHD* dans le sang maternel. Suite aux résultats de leur première étude publiée en 2002 (22), le laboratoire de référence international pour les groupes sanguins propose aux gynécologues la réalisation de la détermination du génotype fœtal rhésus dans le sang maternel.

Le génotypage a été effectué sur plasma, par PCR en temps réel multiplex testant les exons 4, 5 et 10 du *gène RHD*. Les exons 4 et 5 permettaient d'identifier le *RHD* et non le pseudogène *RHD*_Ψ. Les gènes SRY et CCR5 étaient utilisés pour confirmer la présence d'ADN et quantifier la quantité totale de ADN.

L'analyse a été réalisée en 4 réplicats. En l'absence de signal *RHD*, le fœtus était prédit RH:-1(*D*) négatif, uniquement si le signal SRY était amplifié. Si un fœtus féminin était suspecté, un second niveau de tests était alors réalisé, utilisant notamment des exons permettant d'identifier des variants (exon 7).

L'étude a porté sur 1 869 grossesses (69). Les résultats ont été non conclusant sur 64 tests, ont été faussement positifs dans 14 cas et faussement négatifs dans 3 cas. Pour ces 3 derniers cas, les auteurs ont réalisé une étude complémentaire, qui a montré une quantité d'ADN amplifié supérieure aux résultats obtenus chez les fœtus ayant un génotype *RHD*. Pour ces prélèvements, il a été montré que les délais d'acheminement avaient été supérieurs à 14 jours. Les auteurs ont indiqué que la détermination était généralement effectuée sur des prélèvements datant de moins de 7 jours.

Ce même algorithme d'interprétation a été utilisé par une équipe australienne (71), sur 140 femmes enceintes de phénotype RH:-1(*D*) négatif. La première détermination s'effectuait avec une amplification des exons 4, 5 et 10, et l'inclusion de CCR5 comme témoin d'amplification, et de SRY comme témoin de matériel fœtal, en cas de fœtus masculin. En cas de résultats indéterminés³⁶ : une analyse supplémentaire était réalisée en intégrant l'amplification de l'exon 7 avec celle de des exons 4 et 5. La procédure a intégré un niveau d'analyse supplémentaire visant à limiter la survenue de résultats faussement négatifs par l'identification de gène *RASSF1A* hyperméthylé pour attester de la présence d'ADN fœtal, si le fœtus était suspecté féminin (absence d'amplification du gène SRY et absence de gène *RHD*).

Après le premier niveau de détermination, 135 résultats ont pu être fournis correctement : performance établie par les auteurs à 96 %, en tenant compte des 5 résultats indéterminés. Aucun résultat faussement négatif ou positif n'a été retrouvé. Pour les 5 résultats indéterminés, des tests supplémentaires ont été réalisés et ont permis d'identifier 2 gènes *RHD* variants, dont 1 gène *RHD*_Ψ et un autre variant établis par une troisième série de tests.

Minon *et al.* (66) ont indiqué que la détermination du génotype était réalisée en routine depuis 2002 chez les femmes déjà immunisées et à risque d’allo-immunisation. Les modalités de réalisation étaient proches de celles décrites par l'équipe de Finning : PCR en temps réel avec amplification des exons 4, 5 et 10 et utilisation du gène SRY, et CCR5 comme témoins du bon déroulement de la procédure et de l'amplification de matériel fœtal pour les fœtus masculins.

Les résultats étaient établis si l'amplification concomitante des 3 exons était constatée. Deux cent dix-huit femmes ont été prélevées. La performance du test était de 100 %.

Dricot *et al.* (68), qui appartiennent à la même équipe que Minon, ont publié les résultats de leur série de patientes (il est difficile d'exclure la possibilité que ces

³⁶Le Rhésus D était considéré comme positif si 2 des 4 réplicats des exons 4, 5 et 10 étaient positifs et 3 réplicats additionnels d'un des exons atteignaient des valeurs seuils Ct < 42. Le rhésus était considéré comme négatif si au moins 11 des 12 réplicats n'étaient pas amplifié et si le SRY était positif (2 sur 4 réplicats) ou le gène *RASSF1A* était positif (2 sur 3 réplicats).
2 séries soient les mêmes). La procédure est celle décrite précédemment. Ils ont présenté, dans leur publication, la procédure de prise en charge des grossesses des femmes de phénotype RH:-1 (D négatif) selon les résultats des tests.

Le test permet de ne réserver un suivi plus lourd ou une prise en charge spécifique qu’aux femmes enceintes porteuses d’un foetus RH:1 (D positif). Sur les 70 patientes testées, la procédure n’a pas permis d’établir le génotype RHD fœtal dans 2 cas, nécessitant un second prélèvement maternel. Un faux positif a été constaté, lié à une très probable erreur de tube selon les auteurs.

Gautier et al. (65) ont également publié leur expérience sur 2 ans de mise en place de la détermination du génotype chez des patientes caucasiennes non allo-immunisées. La procédure était une PCR en temps réel avec amplification de l’exon 10. La procédure n’a pas permis de déterminer dans 2 cas le génotypage. La raison évoquée était la probable présence de variant ou de pseudogène RHDΨ chez les mères. Cette hypothèse ayant été évoquée en raison de la visualisation de 2 courbes d’amplification, l’une précoce et importante témoignant d’une amplification d’ADN maternel en plus grande quantité, la seconde d’origine fœtale.

Les données publiées décrivant l’expérience en pratique clinique sont peu nombreuses. Les équipes, qui ont testé plusieurs exons, ont établi un algorithme d’interprétation des résultats d’amplification des différents exons. Certaines ont mis en place une procédure à plusieurs niveaux selon les résultats d’une première série d’analyse.

Ces auteurs, à l’issue de leur analyse, ont considéré que la mise en œuvre de la détermination du génotype rhésus fœtal à partir du sang maternel permettrait d’améliorer la prise en charge des grossesses de femmes de phénotype RH -1 (D négatif).

I.4 Conclusion de l’analyse de la littérature

Les données publiées ont montré la diversité des procédures de génotypage RHD fœtal à partir du sang maternel. Il n’existe à l’heure actuelle aucune standardisation de la procédure PCR : exons testés, témoins d extractions et d’amplifications, etc.

Sur le plan des modalités de réalisation, la mise en place systématique d’un contrôle interne d’extraction et d’amplification de l’ADN a été souhaitée par le groupe de travail international, mis en place sous l’égide de l’International Blood Group Reference Laboratory (IBGRL) (84,87).

De même, la PCR sur 2 exons et l’intégration de marqueurs permettant de détecter le pseudogène RHDΨ et le gène hybride (22,28) a été recommandée. À cette fin, le SAFE network a également proposé d’utiliser 2 différents exons, le 7 et l’exon 5 qui ne donnent pas d’amplification lorsque les variants sont présents.

La performance des différentes procédures, décrites dans la littérature, apparaît satisfaisante, une majorité d’études (22 sur 31) a rapporté des performances diagnostiques supérieures à 95 %.

Cependant, comme cela a été souligné, les études présentaient des faiblesses méthodologiques qui limitent la généralisation des résultats, population non définie ou parfois très sélectionnée, pas d’indication sur le nombre de tests non concluants, modalités d’interprétation des résultats de la PCR mal décrites, en particulier lorsque plusieurs exons étaient testés.
Néanmoins, les différentes publications, portant sur les résultats de contrôles externes réalisées sur des laboratoires internationaux (17 laboratoires participant pour le génotypage fœtal), apparaissent rassurants.

De même, sur la base des seules données publiées, la stratégie diagnostique ne peut être définie en termes de :
- date de réalisation optimale de la détermination ;
- conduite à tenir en cas de première détermination positive, certaines équipes préconisent la réalisation d'un second test, puisqu'un résultat faussement négatif peut avoir des conséquences plus graves qu'un résultat faussement positif.

Ce constat a été largement souligné dans l'article de Freeman et al. (88) qui publient les résultats du rapport du SAFE network. Ce rapport du SAFE network en 2006 (82) reconnaît la performance du test, et a curieusement recommandé son utilisation pour les femmes immunisées, alors que les études sont très rares dans cette population. Dans ce rapport, il a été considéré, pour les femmes non immunisées, qu'il existait un manque de données et de recul en pratique clinique pour le recommander à large échelle en routine chez toutes les femmes RH:-1 (D négatif).

II. POSITION DU GROUPE DE TRAVAIL

II.1 Contexte

Les membres du groupe de travail ont insisté sur l'intérêt de disposer de tests non invasifs pour cibler les grossesses devant faire l'objet d'une prise en charge spécifique, à titre préventif pour les femmes de phénotype RH:-1 (rhésus D négatif) non immunisées ou à titre thérapeutique, pour adapter le schéma de surveillance de la grossesse des femmes de phénotype RH:-1 (rhésus D négatif) immunisées.

Certains experts ont même souligné que la mise à disposition d'un test anti-RH1 non invasif était susceptible d'améliorer le bon usage des immunoglobulines et le suivi des recommandations du Collège national des gynécologues obstétriciens français (CNGOF).

Il a été rappelé que la prophylaxie systématique par immunoglobulines anti-RH1 à 28 SA était recommandée depuis 2005 par le CNGOF. Ces immunoglobulines anti-RH1 d'origine humaine sont importées des États-Unis et du Canada. Le risque majeur est la pénurie, le risque infectieux étant jugé à l'heure actuelle très faible, compte tenu de leur mode de préparation.

Il a été indiqué qu'une étude multicentrique intitulée GENIFERH (Génotypage non invasif fœtal rhésus D) était en cours, dans le cadre d'un financement STIC (Soutien aux techniques innovantes et couteuses). Cette étude a plusieurs objectifs :
- l'intérêt médical du test (compliance à l'imminoprophylaxie prénatale, proportion de patientes non exposées aux immunoglobulines anti-RH1, etc.) ;
- l'aspect économique (prix de revient du test, coûts induits et évités, etc.) ;
- l'étude des conditions cliniques et biologiques de faisabilité optimale du test en pratique systématique.
II.2 Analyse des données publiées

Les membres du groupe de travail se sont exprimés sur les données de la littérature. De l'avis général, il apparaît que la PCR temps réel s'est imposée comme la technique de référence. Aucune procédure standard n'a pu être identifiée à partir des données de la littérature. Des exons d'intérêt du gène RHD ont été identifiés, mais leur choix n'est pas unanime. Les témôns de la procédure d'extraction et d'amplification sont variés. Il n'existe pas de contrôle universel de la présence d'ADN fœtal. Le nombre d'analyses à réaliser au cours de la PCR et les modalités d'interprétation des résultats ne sont pas définis. La question d'un second test en cas de résultats négatifs n'a pas été évoquée dans les études publiées. Enfin les résultats des études ne permettent pas de comparer, et donc de hiérarchiser les différentes procédures de détermination.

L'origine ethnique des femmes est une information insuffisamment décrite dans la littérature. Cette donnée est pourtant essentielle pour l'interprétation des résultats des tests.

Les résultats des sensibilités, spécificités et performances extrinsèques des tests, sont considérés satisfaisants, notamment pour les études les plus récentes. Toutefois, les réserves émises dans le document de synthèse bibliographique sur la surestimation probable des performances, en raison de la non prise en compte des résultats non concluants, sont justifiées.

Il a été souligné que l'analyse de la performance du test devait particulièrement porter sur les résultats faussement négatifs, en raison de leur impact clinique majeur puisqu'ils entraînent une perte de chance pour la femme enceinte et le fœtus. Les résultats faussement positifs ne constituent pas un problème clinique aussi important, car leur conséquence consiste en une injection à tort d'immunoglobulines, ce qui est actuellement le cas pour 40 % des grossesses de femmes RH:-1 (D négatif) non immunisées.

Les études, permettant d'attester de l'impact clinique de la mise en œuvre d'une détermination du RHD (rhésus D) fœtal à partir du sang maternel, n'ont pu être clairement distinguées. La majorité des auteurs a surtout cherché à démontrer la validité clinique de leur test. La situation clinique majoritairement concernée était la prophylaxie de l'allo-immunisation anti-RH1.

Les modalités de réalisation des tests en termes d'âge gestationnel, schéma d'interprétation des résultats, attitude à tenir en cas de résultats négatifs ou non concluants, ne peuvent être définies à partir des seules données de la littérature.

II.3 Position pour la pratique clinique

Les membres du groupe de travail ont reconnu les insuffisances des données publiées sur cet aspect. Ils ont souligné que la détermination du génotype RHD était possible en France depuis plusieurs années, et qu'il était regrettable de ne pas disposer des résultats de l'expérience complète de chacun des centres qui réalisent cette détermination en France.

Le recours aux tests disponibles pour la prise en charge des femmes RH:-1 (rhésus D négatif) immunisées est une réalité clinique depuis 3 à 4 ans.

Sur la question d'une utilisation des tests en pratique clinique, les experts se sont exprimés de manière favorable, dans les populations caucasiennes, pour lesquelles les mécanismes à l'origine des phénotypes RH:-1 (rhésus D négatif) sont clairs (déletion du gène RHD essentiellement). Dans cette population, les procédures apparaissent valides et fiables.
Pour les populations d'origine africaine ou afro-antillaise, les données publiées sont peu nombreuses. Toutefois, l'identification des variants les plus fréquents, pseudogène \(RHD_\Psi \) et le gène hybride apparaît possible par l'utilisation d'une combinaison d'exons, incluant notamment l'exon 5. Cette approche rend la détermination acceptable dans cette population.

Selon les experts, les indications pourraient être :
- la prise en charge des grossesses des femmes RH:-1 (D négatif) non immunisées pour lesquelles le géniteur est RH:1 (D positif) ;
- la prise en charge des grossesses des femmes RH:-1 (D négatif) immunisées pour lesquelles le géniteur est RH:1 (D positif).

Le terme minimal de réalisation de la détermination du génotype \(RHD \) fœtal à partir du sang maternel n'est pas une donnée fournie par la littérature. Le protocole de l'étude GENIFERH propose un âge gestationnel d'au moins 12 SA, et le laboratoire Cerba recommande un terme d'au moins 10 SA.

Les études relatives à la cinétique d'apparition de l'ADN fœtal dans le sang maternel ont montré une circulation à des termes aussi précoces que 8 SA.

Le terme minimal de 11–12 SA semble raisonnable selon les membres du groupe de travail, puisque ce test peut être réalisé à l'occasion du prélèvement des marqueurs sériques de trisomie 21 dans le cadre du dépistage combiné du 1er trimestre et/ou précédé une biopsie de trophoblaste (acte invasif à risque d'allo-immunisation). En revanche, un terme maximal de réalisation ne peut être proposé sur la base des données disponibles. Les recommandations françaises préconisent, pour la prophylaxie, de connaître le statut phénotype RH:1 du fœtus avant 28 SA, l'étude GENIFERH préconise une réalisation avant 26 SA.

La conduite à tenir en cas de résultat négatif a été largement débattue au sein du groupe de travail. Les experts immunologistes et biologistes moléculaires ont rappelé l'obligation de résultats qui s'impose aux laboratoires. Une erreur de manipulation de l'échantillon ou de tube est possible ; aussi l'analyse sur un nouveau prélèvement apparaît-elle nécessaire.

La question de réserver cette seconde détermination aux seules situations où le premier prélèvement a été réalisé très précocement (avant 12 SA) a été discutée, puisque les études de cinétique n'ont pas montré de variations importantes de la quantité d'ADN fœtal circulant à des termes « intermédiaires » (par exemple entre 15 SA et 17 SA). Par mesure de prudence et en raison de l'impact majeur des résultats faussement négatifs, il a été donc été proposé de réaliser une seconde détermination 15 jours après que le premier test a donné des résultats négatifs. Cette attitude devra être rediscutée en fonction des résultats de l'étude GENIFERH et à la lumière des résultats de validation des marqueurs fœtaux comme les gènes \(RASSF1A \).

Les études ont montré que les résultats des tests pouvaient être difficiles à interpréter, voire ininterprétables. Dans ces situations, les membres du groupe de travail ont jugé que d'un point de vue clinique, le statut du fœtus devait être considéré comme RH:1 (rhésus D positif).

L'interprétation des résultats discordants doit autant que de besoin s'appuyer sur l'expertise du Centre national de référence en hémobiologie périnatale (CNRHP) qui
jugera de l'intérêt de poursuivre les investigations soit par la pratique de tests complémentaires, soit par la détermination du génotype RHD des parents.

II.4 Aspects organisationnels

La généralisation du test concernerait 90 000 femmes chaque année. Ce changement d'échelle aura un impact organisationnel important.

Actuellement, la réglementation impose d'une part un agrément des professionnels de santé qui réalisent le test par l'Agence de la biomédecine et, d'autre part, une autorisation des structures où il est pratiqué, par les ARH et prochainement les ARS. Par ailleurs, l'agrément et l'autorisation portent sur la réalisation de tests de diagnostique prénatal en génétique moléculaire et n'est pas spécifique du génotypage rhésus.

La réalisation de ces tests nécessite un matériel adapté, une équipe formée en génétique des groupes sanguins et expérimentée, notamment pour la réalisation de génotypage des systèmes des groupes sanguins. Il a été rappelé que la mise à disposition d'une trousse marquée CE ne dispensait pas les laboratoires de valider tout le processus de la PCR : établissement des seuils de positivité en fonction des automates et de l'extracteur utilisé. La réalisation de ces tests nécessite un matériel adapté et une équipe connaissant parfaitement l'immuno-hématologie et la génétique du système rhésus.

Dans le cadre du STIC, les laboratoires ont été admis à participer à l'étude, après avoir réalisé correctement 20 déterminations sur des échantillons de plasma fournis par le Centre national en hémobiologie périnatale qui coordonnait l'étude.

En plus de l'accréditation des laboratoires prévue par les ordonnances « Ballereau » (ordonnance n° 2010-49 du 13 janvier 2010 relative à la biologie médicale (89)), la mise en œuvre d'un contrôle de qualité externe a été jugée indispensable par les participants.

La prise en charge de ces grossesses doit reposer plus que jamais sur une étroite concertation entre les laboratoires et les cliniciens.

III. CONCLUSION

La détermination prénatale du génotype fœtal RHD à partir du sang maternel présente un intérêt en pratique clinique dans les deux indications suivantes :
- la prise en charge des grossesses de femmes RH:-1 (D négatif), dans le cadre de l'immunoprophylaxie, pour cibler les populations devant bénéficier d'immunoglobulines anti-RH1 ;
- en cas d'immunisation, la sélection des femmes RH:-1 (D négatif) devant bénéficier d'un suivi spécialisé et lourd.

Les données disponibles indiquent que le test peut être raisonnablement proposé à partir de 11 SA.

Si les performances cliniques, données de sensibilité et de spécificités, ont été jugées satisfaisantes (supérieures à 95 %) dans une majorité d'études, des erreurs de détermination, résultats faussement négatifs ou faussement positifs sont possibles.

Les conséquences cliniques d'un résultat faussement négatif sont majeures, tout particulièrement chez la femme enceinte RH:-1 (D négatif) déjà immunisée. Dans cette
situation, la grossesse ne bénéficierait pas d'une surveillance spécialisée destinée à identifier et à prendre en charge une anémie fœtale potentiellement sévère. Ainsi, par mesure de prudence, lorsque le résultat d'une première détermination est négatif, il apparaît nécessaire d'effectuer un second prélèvement 15 jours plus tard pour confirmer le résultat. Les résultats faussement positifs ont moins d'impact clinique, ils entraînent soit un traitement par immunoglobulines anti-RH1 inutile, soit une surveillance spécialisée injustifiée de la grossesse.

Le respect d'exigences techniques apparaît déterminant pour garantir la performance du test. La mise en place systématique d'un contrôle de qualité interne d'extraction et d'amplification de l'ADN est indispensable pour limiter les résultats faussement négatifs. Par ailleurs, dans les populations africaines, le phénotype RH:-1 est lié à l'existence de gènes variants non fonctionnels, comme le pseudogène RHDΨ. Dans ce cas, l'identification du gène RHD par l'amplification d'un seul exon ne suffit pas pour déduire correctement le phénotype à partir du génotype, contrairement aux populations caucasiennes ou asiatiques, chez lesquelles le phénotype RH:-1 est majoritairement lié à une délétion du gène RHD.

La détection, par PCR du pseudogène RHDΨ notamment, permettrait de réduire le nombre de faux positifs et d'améliorer la spécificité de la détermination. Lorsque les résultats sont discordants ou difficiles à interpréter, il apparaît nécessaire de s'appuyer sur l'expertise d'un laboratoire hautement spécialisé, comme le Centre national de référence en hémobiologie périnatale (CNRHP). Enfin, la mise en œuvre d'un contrôle de qualité externe est recommandée. Cette activité entre dans le champ du diagnostic prénatal et les laboratoires font l'objet d'une déclaration annuelle d'activité à l'Agence de la Biomédecine. Il serait souhaitable que ce bilan intègre le nombre de tests réalisés en fonction de l'indication (prophylaxie ou suivi de grossesse), la technique utilisée, le nombre de seconde détermination, les incidents ou difficultés techniques rencontrés.

Cette évaluation ne permet pas de préciser plus avant l'ensemble de la stratégie diagnostique. Les résultats de l'étude GENIFERH, réalisée dans le cadre d'un projet STIC, apporteront des informations sur les conditions de réalisation de ce test et sur sa performance en pratique clinique courante. Il apparaît toutefois important de poursuivre la recherche visant à optimiser la performance du test, notamment à éviter les résultats faussement négatifs (validation de témoins d'ADN fœtal par exemple). À l'issue de l'étude GENIFERH, une actualisation de la présente évaluation intégrant l'ensemble des données disponibles pourra être envisagée.

Les résultats de la présente évaluation apportent des éléments qui permettront d'actualiser la stratégie de prise en charge clinique des grossesses de femmes RH:-1 (D négatif).

37 STIC : Soutien aux Techniques Innovantes et Coûteuses.
ANNEXES

I. MÉTHODE GÉNÉRALE D'ÉLABORATION D'UN RAPPORT D'ÉVALUATION D'UNE TECHNOLOGIE DE SANTÉ

L’évaluation des technologies de santé est, selon l’Institute of Medicine (1985) « une démarche dont l’objet est d’examiner les conséquences à court et à long terme, de l’usage d’une technologie particulière sur les individus et sur la société dans son ensemble. Elle prend en compte la sécurité, l’efficacité expérimentale et pragmatique d’une technologie, ainsi que son impact économique (coût, rapport coûts/résultats et implications budgétaires) ; elle analyse également ses implications sociales et éthiques et met à jour les points à approfondir en termes de direction de recherche ». L’objectif est d’éclairer la décision publique par un avis argumenté prenant en compte les différentes dimensions du sujet.

Analyse critique des données identifiées de la littérature scientifique

Une recherche documentaire méthodique est effectuée d’abord par interrogation systématique des bases de données bibliographiques médicales et scientifiques, sur une période adaptée à chaque thème. En fonction du thème traité, des bases de données spécifiques peuvent être consultées. Une étape commune à toutes les études consiste à rechercher systématiquement les recommandations pour la pratique clinique, conférences de consensus, revues systématiques, méta-analyses et autres travaux d’évaluation déjà publiés au plan national et international. Tous les sites Internet utiles (agences gouvernementales, organisations professionnelles, etc.) sont consultés. Les documents, non accessibles par les circuits conventionnels de diffusion de l’information (littérature grise), sont recherchés par tous les moyens disponibles. Par ailleurs, les textes légaux et réglementaires pouvant avoir un rapport avec le thème sont consultés. Les recherches initiales sont mises à jour jusqu’au terme du projet. L’examen des références citées dans les articles analysés permet de sélectionner des articles non identifiés lors de l’interrogation des différentes sources d’information. Enfin, les membres des groupes de travail et de lecture peuvent transmettre des articles de leur propre fonds bibliographique. Le paragraphe « Recherche documentaire » présente le détail des sources consultées ainsi que la stratégie de recherche propres à ce rapport d’évaluation.

Chaque article est analysé selon les principes de la lecture critique de la littérature, afin d’apprécier sa qualité méthodologique.

Position argumentée de professionnels de santé

Les organisations professionnelles sont consultées pour connaître les travaux réalisés sur le sujet et pour proposer une liste d’experts de la technique à évaluer, des autres options thérapeutiques ou de la pathologie étudiée. Le groupe de travail est composé d’une quinzaine de professionnels de différentes spécialités, de différents modes d’exercice (public et libéral, universitaire et non universitaire) et de différentes localisations géographiques. Chaque membre du groupe de travail a rempli une déclaration publique d’intérêts qui a été examinée par la HAS. En cas d’intérêts déclarés, la HAS a estimé qu’ils étaient compatibles avec participation des personnes concernées, au groupe de travail, eu égard à leur expertise par rapport au sujet. La déclaration publique d’intérêts de chacun des membres est mise en ligne sur le site internet de la HAS ; le cas échéant, les intérêts déclarés pouvant avoir un lien avec le sujet évalué, sont présentés dans le rapport. Le groupe de travail se réunit en général une fois. Un rapport présentant la problématique, le champ, la méthode et l’analyse critique de la littérature est envoyé aux membres du groupe de travail, avec un questionnaire pour recueillir leur position de manière formalisée et standardisée avant la réunion. Lors de la réunion, les membres du groupe de travail discutent sur la base
de leur expertise et de l'analyse de la littérature des différents critères permettant d'estimer la validité de la technique (ratio efficacité/sécurité, indications, place dans la stratégie de prise en charge, conditions de réalisation, etc.) et aboutissent, le cas échéant, à un consensus. La réunion est menée d'une manière structurée en s'appuyant sur une liste de questions. Le compte-rendu de la réunion (discussion et position finale) est rédigé par la HAS et envoyé aux membres du groupe de travail pour validation.

Au vu de l'analyse critique de la littérature identifiée et de la position argumenté des professionnels de santé du groupe de travail, le Collège de la HAS, après examen et validation du dossier par la Commission évaluation des actes professionnels (CEAP) conclut quant à la validité de la technologie de santé étudiée en précisant selon les cas, ses indications, sa place dans la stratégie de prise en charge des patients, les conditions de sa bonne réalisation, les conséquences de son introduction dans le système de soins. La composition du Collège de la HAS et de la CEAP est présente sur le site internet de la HAS.

II. RECHERCHE DOCUMENTAIRE

II.1 Bases de données bibliographiques

La stratégie de recherche documentaire dans les bases de données bibliographiques est présentée ci-après dans un tableau comportant les étapes et mots-clés utilisés, ainsi que le résultat quantitatif (nombre de références par type d'étude).

La stratégie de recherche est construite en utilisant, pour chaque sujet, soit des termes issus de thésaurus (descripteurs), soit des termes libres (du titr ou du résumé). Ils sont combinés avec les termes décrivant les types d'études.

Le tableau ci-dessous présente la stratégie de recherche dans les bases de données Medline et Pascal. Dans ce tableau, des références doublons peuvent être présentes entre les différents thèmes et / ou types d'études
Tableau 9. Stratégie de recherche dans les bases de données Medline et Pascal.

<table>
<thead>
<tr>
<th>Type d’étude / Sujet</th>
<th>Période de recherche</th>
<th>Nombre de références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termes utilisés</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GÉNOTYPAGE GROUPE SANGUIN FŒTAL

Recommandations / Conférences de consensus

| Étape 1 | (blood group* OU rhesus)/titre,resume OU (Rh OU RhC OU RhD OU RHE)/titre OU (kidd OU kell OU KEL1 OU KEL2 OU duffy)/titre,resume OU (isoimmun* OU iso-immun* OU alloimmun* OU allo-immun* OU isoantibody OU isoantibodies OU isoantibody antigen* OU isoantibody antigens OU alloantibody OU alloantibodies OU alloantibody antigen* OU isoantigen* OU iso-antigen* OU isoantigen antigens OU iso antigen antigens OU alloantigen* OU allo-antigen* OU allo-antigen antigens OU (haemoly* OU hemoly* OU erythroblastosis)/titre,resume OU (blood group antigens OU blood group incompatibility OU isoantibodies OU isoantigens OU hemolysis)/descripteur |
|---------|----------------------|----------------------|
| Janv. 95 – Juil. 09 | 3 |

Étape 2

| (pregnancy* OU mother* OU maternal OU fetomaternal OU fetomaternal* OU foetal* OU maternal* OU foetal*)/titre,resume OU (pregnancy OU mothers OU pregnant women OU pregnancy complications OU maternal welfare OU maternal exposure OU embryo* OU fetus* OU infant, newborn* OU embryonic and fetal development OU fetal diseases OU fetal distress OU fetal blood OU prenatal diagnosis OU prenatal care OU obstetrics OU gynecology OU neonatology OU perinatology)/descripteur |
|---------|----------------------|----------------------|
| | | |

Étape 3

| (fetal erythroblastosis OU hemolytic disease of the newborn OU haemolytic disease of the newborn OU fetal anemia* OU foetal anemia* OU foetal anaemia* OU fetal anaemia)/titre,resume OU (erythroblastosis, fetal OU anemia, neonatal OU Rh isoimmunization)/descripteur |
|---------|----------------------|----------------------|
| | | |

Étape 4

| (fetal DNA OU foetal DNA OU fetal RNA OU foetal RNA OU fetal nucleic acid* OU foetal nucleic acid* OU fetus DNA OU foetus DNA OU fetuses DNA OU foetuses DNA OU fetus RNA OU foetus RNA OU fetuses RNA OU foetuses RNA OU fetus nucleic acid* OU foetus nucleic acid* OU foetuses nucleic acid* OU foetal cell* OU foetal cell*)/titre,resume OU (DNA OU RNA OR gene OR genes)/titre OU (DNA OR RNA OR gene OR genes)/titre OU (genotyp* OR DNA amplification OR RNA amplification OR nucleic acid amplification OR nucleic acids amplification OR (DNA/blood OR DNA/analysis OR DNA/genetics OR RNA/blood OR RNA/analysis OR RNA/genetics)/descripteur OU (PCR OR polymerase chain reaction)/titre,resume OU (base sequence OR molecular sequence data OR genotype OR Polymerase Chain Reaction OR gene amplification OR nucleic acid probes OR nucleic acid amplification techniques OR sequence analysis OR genetic screening OR pregnancy/genetics OR pregnancy/blood)/descripteur OU mass spectrometry OR (DNA OR RNA OR gene OR genes)/titre OU mass spectrometry OR (blood group antigens OR genetics OR blood group incompatibility OR isoantibodies OR isoantigens OR hemolysis OR erythroblastosis OR neonatal OR Rh isoimmunization OR genetics)/descripteur |
|---------|----------------------|----------------------|
| ET | | |
Détermination prénatale du génotype **RHD** fœtal à partir du sang maternel – Rapport d’évaluation

Étape 5

(guideline* OU recommendation* OU recommandation* OU guide* OU standard*))/titre OU (guideline OU practice guideline OU consensus development conference, NIH OU consensus development conference)/type_publication OU (consensus conference* OU consensus statement*))/titre, resume OU consensus/titre

Métas-analyses / Revues systématiques

| Janv. 95 – Juil. 09 | 5 |

Étape 6

(metaanalysis* OU meta analysis*/titre OU (meta-analysis OU metaanalysis/descripteur OU meta-analysis/type_publication OU systematic* review*/titre, resume OU systematic review/descripteur

Autres revues de la littérature

| Janv. 95 – Juil. 09 | 213 |

Étape 7

review/type_publication

Essais cliniques

| Janv. 95 – Juil. 09 | 212 |

Étape 8

(controlled clinical trials as topic OU controlled therapeutic trial OU randomized controlled trial OU randomized controlled trials as topic OU single-blind method OU single blind procedure OU double-blind method OU double blind procedure OU double blind study)/descripteur OU (randomized controlled trial OU controlled clinical trial)/type_publication OU (random allocation OU randomization)/descripteur OU random*/titre OU (cross-over studies OU crossover procedure OU crossover study OU clinical trial OU clinical trials as topic)/descripteur OU (case-control stud* OU retrospective stud* OU comparative study)/descripteur OU comparative study/type_publication OU (versus OU compar*)/titre

Études de cohortes

| Janv. 95 – Juil. 09 | 51 |

Étape 9

cohort study*/descripteur OU cohort study*/titre OU (cohort analysis OU longitudinal stud* OU follow-up studies OU follow up OU follow up study OU prospective study*)/descripteur

Performances des tests

| Janv. 95 – Juil. 09 | 166 |

Étape 10

(specific* OU sensitiv* OU efficiency OU efficacy OU usefulness)/titre OU sensitivity and specificity/descripteur OU predictive value*/titre, resume OU (false positive reactions OU false negative reactions)/descripteur OU (false positive OU false negative)/titre, resume OU reproducibility of results/descripteur OU (reproducibility OU reliability OU reliable)/titre, resume OU (predictive value of tests OU reference standards OU observer variation)/descripteur

ALLO-IMMUNISATION FŒTO-MATERNELLE

Recommandations / Conférences de consensus

| Janv. 95 – Juil. 09 | 62 |

Étape 5
<table>
<thead>
<tr>
<th>Programmes de santé publique</th>
<th>Janv. 95 – Juil. 09</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Étape 1 ET Étape 2) OU Étape 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 11 (program* OU campaign*/titre OU (program evaluation OU public health OU health priorities OU health planning OU health planning guidelines OU health services research)/descripteur)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta-analyses / Revues systématiques</td>
<td>Janv. 95 – Juil. 09</td>
<td>60</td>
</tr>
<tr>
<td>(Étape 1 ET Étape 2) OU Étape 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dépistage – Autres revues de la littérature</td>
<td>Janv. 95 – Juil. 09</td>
<td>40</td>
</tr>
<tr>
<td>(Étape 1 ET Étape 2) OU Étape 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 12 (screen* OR predict* OR detect*)/titre OR (prenatal test* OR antenatal test* OR prenatal exam* OR antenatal exam*)/titre,resume OR mass screening/descripteur)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dépistage – Essais cliniques</td>
<td>Janv. 95 – Juil. 09</td>
<td>127</td>
</tr>
<tr>
<td>(Étape 1 ET Étape 2) OU Étape 3 ET Étape 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dépistage – Cohortes</td>
<td>Janv. 95 – Juil. 09</td>
<td>32</td>
</tr>
<tr>
<td>(Étape 1 ET Étape 2) OU Étape 3 ET Étape 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dépistage – Performances des tests</td>
<td>Janv. 95 – Juil. 09</td>
<td>72</td>
</tr>
<tr>
<td>(Étape 1 ET Étape 2) OU Étape 3 ET Étape 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dépistage – Risques</td>
<td>Janv. 95 – Juil. 09</td>
<td>25</td>
</tr>
<tr>
<td>(Étape 1 ET Étape 2) OU Étape 3 ET Étape 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 13 (secur* OU safe* OU adverse effect* OU adverse event* OUiatrogen*)/titre,resume OU (risk assessment OU risk management OU safety management OU adverse effects OUiatrogenic disease OU medical errors)/descripteur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dépistage – Acceptabilité</td>
<td>Janv. 95 – Juil. 09</td>
<td>17</td>
</tr>
<tr>
<td>(Étape 1 ET Étape 2) OU Étape 3 ET Étape 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 15 (acceptability OU acceptance OU participation OU preference* OU choice* OU attitude* OU adhesion OU compliant* OU cooper*)/titre,resume OU view/titre OU (patient participation OU consumer satisfaction OU patient acceptance of health care OU attitude to health OU refusal to participate OU mandatory programs OU voluntary programs OU informed consent OU emotions OU choice behaviour)/descripteur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prévention</td>
<td>Janv. 95 – Juil. 09</td>
<td>237</td>
</tr>
<tr>
<td>(Étape 1 ET Étape 2) OU Étape 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information des patientes</td>
<td>Janv. 95 – Juil. 09</td>
<td>38</td>
</tr>
<tr>
<td>(Étape 1 ET Étape 2) OU Étape 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 16</td>
<td>inform*</td>
<td>titre OU (counsel* OU communicat*)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Épidémiologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Étape 1 ET Étape 2 OU Étape 3)</td>
<td></td>
<td>Janv. 95 – Juil. 09 50</td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 17</td>
<td>(epidemiol* OU incidence OU prevalence OU seroprevalence)/titre OU (Rh isoimmunization/epidemiology OU Rh isoimmunization/mortality)/descripteur</td>
<td></td>
</tr>
<tr>
<td>Études économiques</td>
<td></td>
<td>Janv. 95 – Juil. 09 123</td>
</tr>
<tr>
<td>(Étape 1 ET Étape 2) OU Étape 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 18</td>
<td>(cost* OU costs OU economic* OU cost* of illness OU burden* of the disease OU cost* effectiveness OU cost* effectiveness)/titre,resume OU (budgets OU costs and cost analysis OU economics, medical OU financing, government OU health care sector OU insurance, health OU social security OU pregnancy complications/economics OU obstetrics/economics OU gynecology/economics OU neonatology/economics OU gynecology/economics OU perinatology/economics OU Rh isoimmunization/economics)/descripteur</td>
<td></td>
</tr>
<tr>
<td>PUBLICATIONS FRANÇAISES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 19</td>
<td>(anemie* fetale* OU anemie* foetale* OU anemie* neonatale* OU maladie hemolytique nouveau ne* OU agglutinine*)/titre,resume</td>
<td></td>
</tr>
<tr>
<td>Janv. 95 – Juil. 09 139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 20</td>
<td>(groupe* sanguin* OU rhesus)/titre,resume OU (Rh OU RhC OU RhD OU RhE)/titre OU (kidOU kell OU kel1 OU kel2)/titre,resume OU (isoimmunis* OU iso immunis* OU alloimmunis* OU allo immunif OU alloanticorps OU allo anticorps OU isoanticorps OU alloantigen OU allo antigen* OU iso antigen* OU sensitisation OU incompatibilité)/titre,resume</td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 21</td>
<td>(grossesse* OU enceinte* OU mere* OU maternel* OU foetomaternel* OU foeto maternel* OU fetomaternal* OU feto maternel* OU materno fetal* OU maternofoetal* OU fetomaternal* OU feto maternel* OU materno fetal* OU maternofoetal* OU embryon* OU foetus OU foetal OU nouveau ne OU nouveaux nes OU in utero OU antenatal OU prenatal)/titre,resume</td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étape 22</td>
<td>Français* OU France</td>
<td></td>
</tr>
</tbody>
</table>
II.2 Autres sources consultées

Les sites internet consultés pour la recherche documentaire sont présentés ci-après :

Bases (ou portails) de recommandations et de revues systématiques :
- Bibliothèque médicale Lemanissier ;
- Catalogue et index des sites médicaux francophones – CISMef ;
- Centre for Reviews and Dissemination databases ;
- CMA Infobase ;
- Cochrane Library ;
- GP Guidance Database ;
- Guidelines Advisory Committee – GAC ;
- Guidelines International Network – GIN ;
- National Guideline Clearinghouse – NGC ;
- Tripdatabase.

Organismes nationaux :
- Agence Française de Sécurité Sanitaire des Produits de Santé – AFSSAPS ;
- Banque de données en santé publique – BDSP ;
- Collège national des gynécologues et obstétriciens français – CNGOF ;
- Comité d’Evaluation et de Diffusion des Innovations Technologiques – CEDIT
- Institut de veille sanitaire – INVS ;
- Institut national de prévention et d’éducation pour la santé – INPES ;
- Ministère de la Santé ;
- Société française de médecine périnatale – SFMP ;
- Syndicat national des gynécologues et obstétriciens de France – SYNGOF.

Organismes internationaux :
- Agence d’Evaluation des Technologies et des Modes d’Intervention en Santé - AETMIS ;
- Agency for Healthcare Research and Quality – AHRQ ;
- American College of Obstetricians and Gynecologists – ACOG ;
- Blue Cross Blue Shield Association – BCBS – Technology Evaluation Center ;
- British Committee for Standards in Haematology – BCSH ;
- Canadian Agency for Drugs and Technologies in Health – CADTH ;
- Canadian Task Force on Preventive Health Care – CTFPHC ;
- Centers for Disease Control and Prevention – CDC ;
- Centre fédéral d'expertise des soins de santé – KCE ;
- Clinical Knowledge Summaries – CKS ;
- Guidelines and Protocols Advisory Committee – GPAC ;
- Institute for Clinical Systems Improvement – ICSI ;
- Medical Services Advisory Committee – MSAC ;
- National Institute for Health and Clinical Excellence – NICE ;
- National Library for Health – NLH ;
- National Institutes of Health – NIH ;
III. GROUPE DE TRAVAIL

III.1 Constitution
Le groupe a été constitué par des professionnels de santé indiqués par les organismes professionnels suivants :
- Association nationale des praticiens de génétique moléculaire ;
- Collège national des enseignants et praticiens de génétique médicale ;
- Collège national des gynécologues et des obstétriciens français ;
- Société française de génétique humaine ;
- Société française de médecine périnatale ;
- Société française de radiologie.
La Société française de médecine générale avait également été sollicitée, mais n’a pas indiqué de noms.

III.2 Composition
Les membres ayant participé à ce groupe sont :
- Dr Christine ANDRÉ-BOTTÉ, biologie et immunohématologie – Établissement français du sang Lorraine-Champagne – 54500 VANDOEUVRE-LÉS-NANCY ;
- Dr André BENBASSA, gynécologie obstétrique, clinique Belledonne – 38400 SAINT-MARTIN D’HÈRES ;
- Dr Gaël BEUCHER, gynécologie obstétrique, CHU de Caen – 14000 CAEN ;
- Pr Stéphane BEZIEAU, biologie et génétique moléculaire, Hôtel-Dieu – 44000 NANTES ;
- Pr Marc DELPECH, biochimie et biologie moléculaire, hôpital Cochin – 75014 PARIS ;
- Pr Olivier GARRAUD, immunologie – Établissement Français du Sang Auvergne-Loire – 42000 SAINT-ETIENNE ;
- Dr Olivier JOURDAIN, gynécologie obstétrique, polyclinique Jean Vilar – 33520 BRUGES ;
- Pr Bruno LANGER, gynécologie obstétrique, hôpital de Hautepierre – 67000 STRASBOURG ;
- Dr Étienne MORNET, biologie, hôpital André Mignot – 78150 LE CHESNAY ;
- Dr Bach-Nga PHAM, immunologie, INTS / CNRGS – 75011 PARIS ;
- Dr Pierre RAYNAL, gynécologie obstétrique, hôpital André-Mignot – 78150 LE CHESNAY ;
- Dr Marie-Pierre REBOUL, génétique moléculaire, hôpital Pellegrin – 33000 BORDEAUX ;
- Dr Marc-Alain ROZAN, gynécologie obstétrique, cabinet médical – 93300 AUBERVILLIERS ;
- Mme Agnès SIMON, sage-femme, hôpital Saint-Antoine – 75012 PARIS ;
- Dr Norbert WINER, gynécologie obstétrique, CHU de Nantes – 44000 NANTES.
L'Agence de la Biomédecine, conviée à la réunion du groupe de travail, était représentée par :
- D' Pascale LEVY, chef de projet.

III.3 Déclarations d'intérêts
Aucun des membres du groupe n'a déclaré d'intérêt.

III.4 Recueil de la position argumentée du Groupe
Le compte-rendu de la réunion du groupe de travail est présenté dans son intégralité dans le chapitre II de ce rapport.

IV. RÈGLEMENTATION CONCERNANT LE DIAGNOSTIC PRÉNATAL (AGENCE DE LA BIOMÉDECINE)

Code la santé publique :

Article L. 2131-1
Le diagnostic prénatal s'entend des pratiques médicales ayant pour but de détecter in utero chez l'embryon ou le fœtus une affection d'une particulière gravité. Il doit être précédé d'une consultation médicale adaptée à l'affection recherchée. Les analyses de cytogénétique et de biologie en vue d'établir un diagnostic prénatal ne peuvent être pratiquées que dans des établissements publics de santé et des laboratoires d'analyses de biologie médicale autorisés selon les modalités prévues par les dispositions du chapitre II du titre II du livre Ier de la partie VI du présent code.
Les autorisations prévues par le présent article sont délivrées pour une durée de cinq ans. Pour les laboratoires d'analyses de biologie médicale, cette autorisation vaut inscription sur la liste prévue à l'article L. 6211-4.
La création de centres pluridisciplinaires de diagnostic prénatal dans des organismes et établissements de santé publics et privés à but non lucratif est autorisée par l'Agence de la biomédecine instituée à l'article L. 1418-1.

Article L. 2131-2
Tout établissement ou laboratoire autorisé à pratiquer des activités de diagnostic prénatal, tout centre pluridisciplinaire de diagnostic prénatal est tenu de présenter à l'Agence de la biomédecine instituée à l'article L. 1418-1 un rapport annuel d'activité suivant des modalités déterminées par arrêté du ministre chargé de la Santé.

Article L. 2131-3
Toute violation constatée dans un établissement ou un laboratoire, et du fait de celui-ci, des prescriptions législatives et réglementaires applicables au diagnostic prénatal entraîne le retrait temporaire ou définitif des autorisations prévues à l'article L. 2131-1. Le retrait de l'autorisation est également encouru en cas de violation des prescriptions fixées par l'autorisation ou si le volume d'activité ou la qualité des résultats est insuffisant.
Le retrait ne peut intervenir qu'après un délai d'un mois suivant une mise en demeure adressée par l'autorité administrative à l'établissement ou au laboratoire concerné et précisant les griefs. En cas de violation grave des dispositions du présent titre, l'autorisation peut être suspendue sans délai à titre conservatoire.

Article L. 2131-4
Le diagnostic biologique effectué à partir de cellules prélevées sur l'embryon in vitro n'est autorisé qu'à titre exceptionnel dans les conditions suivantes :
Un médecin exerçant son activité dans un centre de diagnostic prénatal pluridisciplinaire tel que défini par l'article L. 2131-1 doit attester que le couple, du fait de sa situation familiale, a une forte probabilité de donner naissance à un enfant atteint d'une maladie génétique d'une particulière gravité reconnue comme incurable au moment du diagnostic.

Le diagnostic ne peut être effectué que lorsqu'a été préalablement et précisément identifiée, chez l'un des parents, ou l'un de ses ascendants immédiats dans le cas d'une maladie gravement invalidante, à révélation tardive et mettant prématurément en jeu le pronostic vital, l'anomalie ou les anomalies responsables d'une telle maladie.

Les deux membres du couple expriment par écrit leur consentement à la réalisation du diagnostic.

Le diagnostic ne peut avoir d'autre objet que de rechercher cette affection ainsi que les moyens de la prévenir et de la traiter.

Il ne peut être réalisé, à certaines conditions, que dans un établissement spécifiquement autorisé à cet effet par l'Agence de la biomédecine instituée à l'article L. 1418-1.

En cas de diagnostic sur un embryon de l'anomalie ou des anomalies responsables d'une des maladies mentionnées au deuxième alinéa, les deux membres du couple, s'ils confirment leur intention de ne pas poursuivre leur projet parental en ce qui concerne cet embryon, peuvent consentir à ce que celui-ci fasse l'objet d'une recherche dans les conditions prévues à l'article L. 2151-5. Par dérogation au deuxième alinéa de l'article L. 1111-2 et à l'article L. 1111-7, seul le médecin prescripteur des analyses de cytogénétique et de biologie en vue d'établir un diagnostic prénatal est habilité à en communiquer les résultats à la femme enceinte.

Article L. 2131-4-1

Par dérogation aux dispositions prévues par le cinquième alinéa de l'article L. 2131-4, le diagnostic biologique effectué à partir de cellules prélevées sur l'embryon in vitro peut également être autorisé, à titre expérimental, lorsque les conditions suivantes sont réunies :

- le couple a donné naissance à un enfant atteint d'une maladie génétique entraînant la mort dès les premières années de la vie et reconnue comme incurable au moment du diagnostic ;
- le pronostic vital de cet enfant peut être amélioré, de façon décisive, par l'application sur celui-ci d'une thérapeutique ne portant pas atteinte à l'intégrité du corps de l'enfant né du transfert de l'embryon in utero, conformément à l'article 16-3 du Code civil ;
- le diagnostic mentionné au premier alinéa a pour seuls objets de rechercher la maladie génétique ainsi que les moyens de la prévenir et de la traiter, d'une part, et de permettre l'application de la thérapeutique mentionnée au troisième alinéa, d'autre part.

Les deux membres du couple expriment par écrit leur consentement à la réalisation du diagnostic.

La réalisation du diagnostic est soumise à la délivrance d'une autorisation par l'Agence de la Biomédecine, qui en rend compte dans son rapport public, conformément à l'article L. 1418-1. Cette autorisation est subordonnée au respect des dispositions prévues au dernier alinéa de l'article L. 2141-3.

Article L. 2131-4-2

Sont seuls habilités à procéder au diagnostic prénatal et au diagnostic biologique effectué à partir de cellules prélevées sur l'embryon in vitro les praticiens ayant été agréés à cet effet par l'Agence de la biomédecine mentionnée à l'article L. 1418-1 dans des conditions fixées par voie réglementaire.
Le nom des praticiens agréés chargés d'exercer les activités mentionnées au présent article fait l'objet d'une déclaration à l'autorité administrative qui a délivré l'autorisation mentionnée aux articles L. 2131-1 ou L. 2131-4.

Article L. 2131-5
Sauf disposition contraire, les modalités d'application du présent chapitre sont déterminées par décret en Conseil d'État et notamment :

1. Les missions, le rôle auprès des autres intervenants en matière de diagnostic prénatal et les conditions de création et d'autorisation des centres pluridisciplinaires de diagnostic prénatal prévus à l'article L. 2131-1 ;

2. La nature des analyses de cytogénétique et de biologie en vue d'établir un diagnostic prénatal et les conditions dans lesquelles elles peuvent être pratiquées dans les établissements publics de santé et les laboratoires d'analyses de biologie médicale autorisés ;

3. Les conditions dans lesquelles le diagnostic biologique effectué à partir de cellules prélevées sur l'embryon in vitro peut être réalisé dans un établissement spécifiquement autorisé à cet effet.
V. PRÉSENTATION DES ÉTUDES PUBLIÉES

V.1 Tableau de présentation des études

| Étude | Effectif | Origine ethnique des femmes | Âge gestationnel | Type de PCR | Nombre de runs : duplicat, triplicat, etc. | Types d'exon | témoin de PCR ou de l'ADN fœtal | Examen de référence : rhésus à la naissance, rhésus sur aminioocytes | Nbre de tests non concluants | VP | FP | VN | FN | Se
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Mufti et al., 1998 (72)</td>
<td>35</td>
<td>NA</td>
<td>6-40 SA</td>
<td>PCR érythroblastes</td>
<td>NA</td>
<td>Exons 7/10</td>
<td>NA</td>
<td>ADN sur cellules fœtales ou sérologie postnatale</td>
<td>NA</td>
<td>6</td>
<td>0</td>
<td>16</td>
<td>13</td>
<td>31,20 %</td>
</tr>
<tr>
<td>Al-Mufti et al., 1998 (72)</td>
<td>35</td>
<td>NA</td>
<td>6-40 SA</td>
<td>PCR érythroblastes</td>
<td>NA</td>
<td>Exons 7/10</td>
<td>NA</td>
<td>ARN sur cellules fœtales ou sérologie postnatale</td>
<td>NA</td>
<td>12</td>
<td>0</td>
<td>16</td>
<td>7</td>
<td>63 %</td>
</tr>
<tr>
<td>Faas et al., 1998 (73)</td>
<td>31</td>
<td>NA</td>
<td>12-19 SA</td>
<td>PCR ADNF Plasma</td>
<td>NA</td>
<td>Exon 7</td>
<td>NA</td>
<td>ADN sur aminioocytes</td>
<td>NA</td>
<td>18</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>100 %</td>
</tr>
<tr>
<td>Lo et al., 1998 (31)</td>
<td>57</td>
<td>NA</td>
<td>7-41 SA</td>
<td>PCR temps réel ADNF Plasma</td>
<td>NA</td>
<td>Exon 10</td>
<td>NA</td>
<td>ADN sur aminioocytes / Sérologie sang cordon</td>
<td>NA</td>
<td>37</td>
<td>0</td>
<td>18</td>
<td>2 (8 et 9 SA)</td>
<td>94,8 %</td>
</tr>
<tr>
<td>Bishoff et al., 1999 (60)</td>
<td>20</td>
<td>patientes immunisées</td>
<td>15-36 SA</td>
<td>PCR conventionnelle / PCR temps réel fluorescente ADNF, sérum</td>
<td>NA</td>
<td>Exon 7</td>
<td>NA</td>
<td>Sérologie postnatale</td>
<td>NA</td>
<td>14</td>
<td>NA</td>
<td>NA</td>
<td>6</td>
<td>70 %</td>
</tr>
<tr>
<td>Cunning ham et al., 1999 (74)</td>
<td>96</td>
<td>NA</td>
<td>Les 3 trimestres de la grossesse</td>
<td>PCR ARNF sérum</td>
<td>NA</td>
<td>Exon 10</td>
<td>NA</td>
<td>Sérologie postnatale</td>
<td>NA</td>
<td>38</td>
<td>6</td>
<td>34</td>
<td>18</td>
<td>67,80 %</td>
</tr>
</tbody>
</table>

Se : sensibilité.
Spé : spécificité.

Patientes porteuses exclusivement de fœtus RH positif.

Haute Autorité de Santé / Service évaluation des actes professionnels / janvier 2011 - 63 -
<table>
<thead>
<tr>
<th>Étude</th>
<th>Effectif</th>
<th>Origine ethnique des femmes</th>
<th>Âge gestationnel</th>
<th>Type de PCR</th>
<th>Nombre de runs : duplicat, triplicat, etc.</th>
<th>Types d’exon</th>
<th>Témoins de PCR ou de l’ADN fœtal</th>
<th>Examen de référence : rhésus à la naissance, rhésus sur amniocytes</th>
<th>Nombre de tests non concluants</th>
<th>VP</th>
<th>FP</th>
<th>VN</th>
<th>FN</th>
<th>Se⁴¹</th>
<th>Spé⁴²</th>
<th>Performan-cœ diagnostique VP + VN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelson et al., 2001 (75)</td>
<td>60</td>
<td>NA</td>
<td>9-34 SA</td>
<td>PCR ADNf Plasma</td>
<td>NA Exon 10 SRY</td>
<td>Sérologie postnatale</td>
<td>NA</td>
<td>Exon 10 SRY naïf et RHD</td>
<td>NA</td>
<td>4</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>96,3 %</td>
<td>100 %</td>
<td>97 %</td>
</tr>
<tr>
<td>Zhong et al., 2001 (61)</td>
<td>34</td>
<td>NA</td>
<td>13-17 SA</td>
<td>PCR multiplex temps réel ADNf Plasma</td>
<td>NA Exon 10 SRY avec détection simultanée SRY et RHD</td>
<td>Amniocytes</td>
<td>NA</td>
<td>26 0 7 1</td>
<td>96,3 %</td>
<td>100 %</td>
<td>97 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finning et al., 2002 (22)</td>
<td>137</td>
<td>NA</td>
<td>8-42 SA</td>
<td>PCR temps réel ADNf Plasma</td>
<td>Plusieurs réplicats Exons 4, 5, 6, 10 et mutations différentes entre RHD et RHDψ</td>
<td>Cellules fœtales provenant de l’amniocentèse ou BT ou sérologie postnatale</td>
<td>NA</td>
<td>94 0 43 0</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costa et al., 2002 (36)</td>
<td>106</td>
<td>NA</td>
<td>8-14 SA</td>
<td>PCR duplex temps réel ADNf sérum</td>
<td>Duplicat Exon 10 Amplification du gène Superoxyde (SOD) duplex avec RHD</td>
<td>Cellules fœtales provenant de l’amniocentèse ou BT ou sérologie postnatale</td>
<td>62 0 40 0</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson et al., 2003 (62)</td>
<td>47</td>
<td>NA</td>
<td>18-40 SA</td>
<td>PCR conventionnelle / PCR temps réel</td>
<td>NA Exons 4, 5, 10, multi-exons</td>
<td>Sérologie postnatale</td>
<td>NA</td>
<td>36 1 10 0</td>
<td>100 %</td>
<td>91 %</td>
<td>97,9 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁴¹ Se : sensibilité.
⁴² Spé : spécificité.
Tableau 10 (suite). Présentation des études.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Effectif</th>
<th>Origine ethnique des femmes</th>
<th>Âge gestationnel</th>
<th>Type de PCR</th>
<th>Nombre de runs : duplicat, triplicat, etc.</th>
<th>Types d'exon</th>
<th>Témoins de PCR ou de l'ADN fœtal</th>
<th>Examen de référence : rhésus à la naissance, rhésus sur aminiocytes</th>
<th>nombre de tests non concluants</th>
<th>VP</th>
<th>FP</th>
<th>VN</th>
<th>FN</th>
<th>Spé (^{44})</th>
<th>Performan - ce diagnostique (\text{VP + VN})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randen et al., 2003 (23)</td>
<td>114</td>
<td>NA</td>
<td>6-38 SA</td>
<td>PCR temps réel / PCR duplex fluorescent ADNf sang</td>
<td>2-5 réplicats</td>
<td>Exon 7</td>
<td>SRY</td>
<td>Sérologie postnatale</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Siva et al., 2003 (76)</td>
<td>28</td>
<td>NA</td>
<td>15-17 SA</td>
<td>PCR ADNf Plasma ou sérum</td>
<td>NA</td>
<td>Exons 7,10</td>
<td>Bétaglobine / SRY</td>
<td>Sérologie postnatale</td>
<td>(2^{45})</td>
<td>17</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>85 %</td>
<td>66,7 %</td>
</tr>
<tr>
<td>Turner et al., 2003 (32)</td>
<td>31</td>
<td>NA</td>
<td>6-20 SA</td>
<td>PCR temps réel ADNf sang total</td>
<td>Duplicat</td>
<td>Exon 10</td>
<td>gène Bêtaactine (ACTB)</td>
<td>Sérologie postnatale</td>
<td>NA</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td>3</td>
<td>82,3 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Rouillac-Le Sciellour et al., 2004 (59)</td>
<td>545 femmes immuni-sées (^{46})</td>
<td>Cauca-sienne et asiatique</td>
<td>7-40 SA</td>
<td>PCR temps réel quantitative / PCR conventionnelle ADNf Plasma</td>
<td>Duplicat(^{47})</td>
<td>Exons 7,10</td>
<td>NA</td>
<td>Aminiocytes ou sérologie postnatale</td>
<td>NA</td>
<td>44</td>
<td>2</td>
<td>96</td>
<td>3</td>
<td>99,3 %</td>
<td>98 %</td>
</tr>
<tr>
<td>Rouillac-Le Sciellour et al., 2004 (59)</td>
<td>306 femmes non immuni-sées (^{48})</td>
<td>Cauca-sienne et asiatique</td>
<td>7-40 SA</td>
<td>PCR temps réel quantitative / PCR conventionnelle ADNf Plasma</td>
<td>Duplicat(^{49})</td>
<td>Exons 7,10</td>
<td>NA</td>
<td>Aminiocytes ou sérologie postnatale</td>
<td>NA</td>
<td>20</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td>99,5 %</td>
</tr>
</tbody>
</table>

\(^{43}\) Se : sensibilité.

\(^{44}\) Spé : spécificité.

\(^{45}\) Pour 2 prélèvements pas d'ADN en quantité suffisante pour amplification.

\(^{46}\) 42 femmes (4 %) exclues, car gène RHDP n'hybride ou non fonctionnel.

\(^{47}\) 1 sur PCR conventionnelle et l'autre sur PCR temps réel. Résultat considéré comme positif si au moins exon 7 positif sur les 2.

\(^{48}\) 42 femmes (4 %) exclues, car gène RHDP n'hybride ou non fonctionnel.

\(^{49}\) 1 sur PCR conventionnelle et l'autre sur PCR temps réel. Positif si au moins exon 7 positif sur les 2.
Tableau 10 (suite). Présentation des études.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Effectif</th>
<th>Origine ethnique des femmes</th>
<th>Âge gestationnel</th>
<th>Type de PCR</th>
<th>Nombre de runs : duplicat, triplicat, etc.</th>
<th>Types d'exon</th>
<th>Témoins de PCR ou de l'ADN fœtal</th>
<th>Examen de référence : rhésus à la naissance, rhésus sur aminioocytes</th>
<th>nombre de tests non concluants</th>
<th>Se(^{50})</th>
<th>Spé(^{51})</th>
<th>Performan- ce diagnosti- que</th>
<th>VP</th>
<th>FP</th>
<th>VN</th>
<th>FN</th>
<th>Se(^{52})</th>
<th>Spé(^{52})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van der Schoot et al., 2004 (63)</td>
<td>Étude sur 1 257 cas(^{53})</td>
<td>NA</td>
<td>28-30 SA</td>
<td>PCR temps réel ADNf Plasma</td>
<td>NA</td>
<td>Exon 7</td>
<td>NA</td>
<td>Sérologies</td>
<td>NA</td>
<td>NA</td>
<td>5</td>
<td>NA</td>
<td>7</td>
<td>NA</td>
<td>NA</td>
<td>99,10 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rijnders et al., 2004 (24)</td>
<td>72</td>
<td>NA</td>
<td>11-19 SA</td>
<td>PCR temps réel ADNf Plasma</td>
<td>NA</td>
<td>Exon 7</td>
<td>SRY, ALB</td>
<td>Amniocytes ou sérologie postnatale</td>
<td>NA</td>
<td>43</td>
<td>1</td>
<td>29</td>
<td>0</td>
<td>100 %</td>
<td>96,50 %</td>
<td>98,60 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finning et al., 2004 (64)</td>
<td>283</td>
<td>NA</td>
<td>2(^{e}) T</td>
<td>PCR multiplex temps réel ADNf Plasma</td>
<td>4 réplicats</td>
<td>Exons 4, 5, 10</td>
<td>SRY / Présence ou absence de 8 insertions, délétion du polymorphisme</td>
<td>Amniocytes ou sérologie postnatale</td>
<td>7(^{53})</td>
<td>génotypes non concluants</td>
<td>147</td>
<td>0</td>
<td>76</td>
<td>3</td>
<td>98 %</td>
<td>100 %</td>
<td>98,60 %</td>
<td></td>
</tr>
<tr>
<td>Gautier et al., 2005 (65)</td>
<td>285(^{54})</td>
<td>Caucasian</td>
<td>8-35 Moyenne : 15,2 SA</td>
<td>PCR temps réel quantitative ADNf Plasma</td>
<td>Duplicat</td>
<td>Exon 10</td>
<td>ADN traceur de souris</td>
<td>Amniocytes ou sérologie postnatale</td>
<td>2(^{55})</td>
<td>179</td>
<td>0</td>
<td>104</td>
<td>0</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hromadnikova et al., 2005 (33)</td>
<td>39(^{56})</td>
<td>NA</td>
<td>11-38 SA</td>
<td>PCR temps réel quantitative ADNf Plasma</td>
<td>5 réplicats</td>
<td>Exons 7,10</td>
<td>GLO gène (bétaglobine)</td>
<td>Sérologie postnatale</td>
<td>15(^{57})</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{50}\) Se : sensibilité.
\(^{51}\) Spé : spécificité.
\(^{52}\) 2 359 patientes initiales. Analyse sur les 1 267 fœtus ayant une sérologie postnatale.
\(^{53}\) 50 génotypes en attente de confirmation.
\(^{54}\) Exclusion de 2 femmes RHD négatif avec pseudo gène ou variant, par ailleurs, impossibilité de vérifier le résultat pour 11 fœtus : 8 perdus de vue et 3 interruptions volontaires de grossesse.
\(^{55}\) 2 femmes RHD négatives avec pseudogène ou variant.
\(^{56}\) Femmes immunisées ou non + 4 femmes enceintes avec RH:W1 (phénotype rhésus D faible).
\(^{57}\) 15 fœtus ou pas de sérologies postnatales et pas de génotypage pour les 5 patientes avec RH:W1 (phénotype rhésus D faible). Comparaison possible pour 24 fœtus.

Haute Autorité de Santé / Service évaluation des actes professionnels / janvier 2011
Tableau 10 (suite). Présentation des études.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Effectif</th>
<th>Origine ethnique des femmes</th>
<th>Âge gestationnel</th>
<th>Type de PCR</th>
<th>Nombre de runs : duplicat, triplicat, etc.</th>
<th>Types d'exon</th>
<th>Témoins de PCR ou de l'ADN fœtal</th>
<th>Examen de référence : rhésus à la naissance, rhésus sur aminioocytes</th>
<th>nombre de tests non concluants</th>
<th>VP</th>
<th>FP</th>
<th>VN</th>
<th>FN</th>
<th>Se<sup>58</sup></th>
<th>Spé<sup>59</sup></th>
<th>Performance diagnostique VP + VN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hromadni kova et al., 2005 (34)</td>
<td>45<sup>50</sup></td>
<td>NA</td>
<td>11-40 SA</td>
<td>PCR multiplex temps réel quantitative ADNf Plasma</td>
<td>5 réplicats</td>
<td>Exons 7,10</td>
<td>GLO gène / SRY</td>
<td>Sérologie postnatale</td>
<td>NA</td>
<td>24</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Hromadni kova et al., 2005 (35)</td>
<td>23<sup>61</sup></td>
<td>Cauca sienne</td>
<td>11-37 SA</td>
<td>PCR multiplex temps réel quantitative ADNf Plasma</td>
<td>7 réplicats</td>
<td>Exons 7,10</td>
<td>GLO gène / SRY</td>
<td>Sérologie postnatale</td>
<td>NA</td>
<td>16</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Minon et al., 2005 (66)</td>
<td>218<sup>62</sup></td>
<td>Cauca sienne + 13 couples d'origine africaine</td>
<td>10-36 SA</td>
<td>PCR multiplex temps réel quantitative ADNf Plasma</td>
<td>Duplicat</td>
<td>Exons 4, 5, 10</td>
<td>SRY</td>
<td>Sérologie postnatale</td>
<td>NA</td>
<td>137</td>
<td>0</td>
<td>76</td>
<td>0</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Zhou et al., 2005 (26)</td>
<td>98</td>
<td>82 caucas siennes, 7 africaines, 1 asiatique 9 inconnues</td>
<td>10 SA - 42 SA</td>
<td>PCR duplex temps réel ADNf Plasma</td>
<td>Duplicat</td>
<td>Exons 4, 5, 10</td>
<td>SRY / 8 polymorphismes</td>
<td>Sérologie postnatale</td>
<td>NA</td>
<td>98</td>
<td>4</td>
<td>24</td>
<td>2</td>
<td>94,4 %</td>
<td>92,3 %</td>
<td>93,4 %</td>
</tr>
<tr>
<td>Banch Clausen et al., 2005 (67)</td>
<td>56</td>
<td>NA</td>
<td>15-36 SA</td>
<td>PCR temps réel quantitative ADNf Plasma</td>
<td>4 réplicats</td>
<td>Exons 7,10</td>
<td>NA</td>
<td>Sérologie postnatale</td>
<td>1 (15 SA)</td>
<td>NA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>94,7 %</td>
<td>100 %</td>
<td>NA</td>
</tr>
</tbody>
</table>

⁵⁸ Se : sensibilité.
⁵⁹ Spé : spécificité.
⁶⁰ Femmes immunisées ou non.
⁶¹ Femmes immunisées.
⁶² Femmes immunisées ou non dont 5 grossesses gémellaires.
Tableau 10 (suite). Présentation des études.

| Étude | Effectif | Origine ethnique des femmes | Âge gestationnel | Type de PCR | Nombre de runs : duplicat, triplicat, etc. | Types d'exon | Témoins de PCR ou de l’ADN fœtal | Examen de référence : rhésus à la naissance, rhésus sur amniocytes | nombre de tests non concluants | VP | FP | VN | FN | Se\(^{63}\) | Spé\(^{64}\) | Performa-
|--------------------|----------|-----------------------------|------------------|-------------|---|--------------|----------------------------------|-------------------------------|--------------------------------|----|----|----|----|------|-------| ce diagnosti-
| | | | | | | | | | |----|----|----|----|------|-------| que? VP + VN
| Brojer et al., 2005 (25) | 255 | NA | 5-39 SA | PCR temps réel quantitative ADNf Plasma | 3 réplicats | Exons 7, 10, intron 4 | SRY / 11 Polymorphisme / gène bêta-actine | Amniocytes Sérologie postnatale | 25\(^{65}\) | 165 | 0 | 65 | 0 | 100 % | 100 % | 100 %
| Machado et al., 2006 (78) | 81 | Européenne, africaine, indigène | 4-41 SA (15 T1, 37 T2, 29 T3) | PCR conventionnelle ADNf Plasma | NA | Exon 10, Intron 4 | NA | Sérologie postnatale | 6 | 58 | 1 | 15 | 1 | 98,3 % | 93,7 % | 97,3 %
| Daniels et al., 2006 (28) | 533\(^{66}\) | NA | NA | PCR temps réel quantitative Multiplex ADNf Plasma | NA | Exons 4, 5, 10 | SRY/Polymorphisme | Sérologie postnatale | 206\(^{67}\) | NA | 1 | NA | 1 | NA | NA | 99,4 %
| Dricot et al., 2006 (68) | 70 | Caucasiennes | T1, T2, T3 | PCR multiplex temps réel quantitative ADNf Plasma | Duplicat | Exons 4, 5,10 | SRY | Sérologie postnatale | NA | 46 | 1 | 23 | 0 | 100 % | 95,8 % | 98,6 %
| Dif-Couvreux et al., 2006 (77) | 99 | Caucasiennes | 15-40 SA | PCR nichée conventionnelle ADNf Plasma | NA | Exons 4,10 | NA | Amniocytes ou sérologie postnatale | 1 | 68 | 4 | 26 | 0 | 100 % | 86,7 % | 95 %

\(^{63}\) Se : sensibilité.
\(^{64}\) Spé : spécificité.
\(^{65}\) 23 car replicats discordants et manque d’ADN dans 2 cas.
\(^{66}\) seuls 327 fœtus ont eu une sérologie postnatale.
\(^{67}\) 206 fœtus sans sérologies postnatales. Donc étude sur 327 fœtus.
Tableau 10 (fin). Présentation des études.

<table>
<thead>
<tr>
<th>Étude</th>
<th>Effectif</th>
<th>Origine ethnique des femmes</th>
<th>Âge gestationnel</th>
<th>Type de PCR</th>
<th>Nombre de runs : duplicat, triplicat, etc.</th>
<th>Types d’exon</th>
<th>Témoins de PCR ou de l’ADN fœtal</th>
<th>Examen de référence : rhésus à la naissance, rhésus sur amniocytes</th>
<th>Nombre de tests non concluants</th>
<th>VP</th>
<th>FP</th>
<th>VN</th>
<th>FN</th>
<th>Se</th>
<th>Spé</th>
<th>Performance diagnostique VP + VN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rouillac et al., 2007</td>
<td>300</td>
<td>NA</td>
<td>10-34 SA</td>
<td>PCR temps réel quantitative ADNf Plasma</td>
<td>NA</td>
<td>Exons 7/10</td>
<td>NA</td>
<td>Amniocytes ou sérologie postnatale</td>
<td>NA</td>
<td>229</td>
<td>2</td>
<td>79</td>
<td>0</td>
<td>100 %</td>
<td>97,5 %</td>
<td>99,4 %</td>
</tr>
<tr>
<td>Finning et al., 2008</td>
<td>1 869</td>
<td>Blanche : 55 %, asiatique : 8 %, noire : 1,5 %, afro-caribéenne : 0,5 %, métissée : 1 %, inconnue : 33 %</td>
<td>8-38 SA</td>
<td>PCR temps réel quantitative ADNf Plasma</td>
<td>NA</td>
<td>Exons 5,7</td>
<td>NA</td>
<td>Sérologie postnatale</td>
<td>64</td>
<td>1</td>
<td>11</td>
<td>8</td>
<td>14</td>
<td>670</td>
<td>99,7 %</td>
<td>98 %</td>
</tr>
<tr>
<td>Müller et al., 2008</td>
<td>1 022</td>
<td>NA</td>
<td>6-32 SA</td>
<td>PCR duplex temps réel quantitative ADNf Plasma</td>
<td>NA</td>
<td>Exons 5,7</td>
<td>Bêetaglobine</td>
<td>Sérologie postnatale</td>
<td>0</td>
<td>660</td>
<td>2</td>
<td>357</td>
<td>3</td>
<td>99,7 %</td>
<td>99,2 %</td>
<td>99,2 %</td>
</tr>
<tr>
<td>Hyland et al., 2009</td>
<td>140</td>
<td>NA</td>
<td>12-40 SA</td>
<td>PCR duplex temps réel quantitative ADNf Plasma</td>
<td>NA</td>
<td>Exons 4, 5, 7, 10</td>
<td>SRY/RASS FIA méthylation</td>
<td>Sérologie postnatale</td>
<td>3</td>
<td>95</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>100 %</td>
<td>100 %</td>
<td>96 % (135/140)</td>
</tr>
</tbody>
</table>

NA : non applicable ; PCR : polymerase chain reaction ; SRY : Sex-determining Region of Y chromosome ; SA : semaine d’aménorrhée ; ADN : acide désoxyribonucléique ; ARN : acide ribonucléique ; VP : vrai positif ; FP : faux positif ; VN : vrai négatif ; FN : faux négatif ; IMG : interruption médicale de grossesse.

68 Se : sensibilité.
69 Spé : spécificité.
70 1 997 femmes initialement incluses, exclusion de 128 fœtus sans sérologies postnatales.
71 8 gènotypes variants : Exon 7 + et exon 5 et 56 gènotypes non concluants (3,4 %).
72 1 113 patientes initialement incluses, exclusion de 5 patientes avec variants et 23 problèmes de sérums, une avec RHDDΨ et exclusion de 63 fœtus sans sérologies.
73 1 femme DVI variant et 9 immunisées.
74 5 non concluants, mais avec tests supplémentaires détection de 2 gènes variants donc 3 tests véritablement non concluants.
75 La performance a été calculée par les auteurs sur la base du premier niveau de test.
RÉFÉRENCES BIBLIOGRAPHIQUES

Détermination prénatale du génotype RHD fœtal à partir du sang maternel – Rapport d’évaluation

Détermination prénatale du génotype RHD fœtal à partir du sang maternel – Rapport d’évaluation

80. Denomme GA, Fernandes BJ. Fetal blood group genotyping. Transfusion 2007;47(1 Suppl):64S-8S.

Détermination prénatale du génotype RHD fœtal à partir du sang maternel – Rapport d'évaluation

Toutes les publications de la HAS sont téléchargeables sur www.has-sante.fr

ISBN 978-2-11-128511-8