AVIS D’EFFICIENCE

ORKAMBI® (lumacaftor/ivacaftor)
VERTEX PHARMACEUTICALS

Date de validation par la CEESP : 10 mai 2016

Le présent avis est publié sous réserve des droits de propriété intellectuelle
Ce document a été validé par la Commission Evaluation économique et de santé publique en mai 2016
© Haute Autorité de santé – 2016
Sommaire

Liste des abréviations... 7

1. Avis de la CEESP .. 8
 1.1 Objectif et contexte de l’étude .. 8
 1.2 Conformité de l’étude médico-économique aux recommandations méthodologiques de la HAS.................. 8
 1.2.1 Analyse coût-résultat .. 8
 1.2.2 Analyse d’impact budgétaire .. 9
 1.3 Conclusion de la CEESP sur l’efficience .. 9
 1.4 Données complémentaires .. 11

2. Synthèse de l’analyse critique .. 12

3. Annexe 1 – Contexte de la demande .. 14
 3.1 Objet de la demande ... 14
 3.2 Produit et indication concernés par la demande ... 14
 3.3 Historique d’autorisation de mise sur le marché ... 18
 3.4 Historique du remboursement ... 18
 3.5 Documents support de l’analyse critique .. 18

4. Annexe 2 - Analyse critique détaillée de l’étude médico-économique... 20
 4.1 Objectif de l’étude médico-économique proposée .. 20
 4.1.1 Objectif tel que proposé par les auteurs .. 20
 4.1.2 Analyse critique de l’objectif ... 20
 4.1.1 Les choix structurants tels que présentées par les auteurs .. 20
 4.1.2 Analyse critique concernant les choix structurants ... 21
 4.2 La modélisation ... 23
 4.2.1 La modélisation telle que présentée par les auteurs .. 23
 4.2.2 Analyse critique de la modélisation ... 35
 4.3 Mesure et valorisation des états de santé .. 43
 4.3.1 Evaluation des résultats de santé telle que présentée par les auteurs ... 43
 4.3.2 Analyse critique de l’estimation des résultats de santé ... 47
 4.4 Mesure et valorisation des coûts .. 51
 4.4.1 Evaluation des coûts telle que présentée par les auteurs ... 51
 4.4.2 Analyse critique de l’évaluation des coûts .. 60
 4.5 Présentation des résultats et analyses de sensibilité ... 64
 4.5.1 Présentation des auteurs ... 64
 4.5.2 Analyse critique de la présentation des résultats et de l’analyse de sensibilité 84
 4.6 Commentaires généraux .. 89

5. Annexe 4 – Echange avec l’industriel .. 90
LISTE DES TABLEAUX

Tableau 1. RDCR par QALY en fonction de l’âge à l’initiation du traitement .. 10
Tableau 2. Synthèse de l’analyse critique de l’évaluation économique .. 12
Tableau 3. Principales caractéristiques des études cliniques de phase III TRAFFIC et TRANSPORT .. 16
Tableau 4. Fréquence des traitements reçus dans les essais TRAFFIC et TRANSPORT ... 22
Tableau 5. Comparaison des caractéristiques des populations utilisées dans le modèle 4, issues du registre français 2013 32 et du CFFPR 1993 36 ... 24
Tableau 6. Paramètres associés aux caractéristiques individuelles prises en compte dans le modèle de Liou et al. .. 27
Tableau 7. Synthèse des valeurs et sources utilisées pour évaluer la survenue des événements 29
Tableau 8. Evolution du VEMS chez les patients traités par SoC seul après 24 semaines ... 30
Tableau 9. Evolution du VEMS chez les patients traités par sous SoC + lumacaftor/ivacaftor après 24 semaines .. 31
Tableau 10. Fréquence annuelle des EP nécessitant une hospitalisation ou une antibiothérapie IV sous SoC seul et sous SoC + lumacaftor/ivacaftor ... 32
Tableau 11. Evolution du poids en z-score sous SoC seul et sous SoC + lumacaftor/ivacaftor .. 32
Tableau 12. Prévalence et incidence du diabète chez les patients du modèle .. 33
Tableau 13. Prévalence de S. aureus et B. cepacia chez les patients du modèle .. 33
Tableau 14. Fréquences des EI modélisés dans les bras lumacaftor/ivacaftor et placebo des essais TRAFFIC et TRANSPORT (source : rapport technique) .. 34
Tableau 15. Comparaison des caractéristiques des populations utilisées dans le modèle 4, et celles issues du registre français 2013 12 .. 35
Tableau 16. Comparaison des valeurs d’évolution du VEMS en fonction de l’âge utilisées par l’industriel vs valeurs demandées par la HAS ... 39
Tableau 17. Valeurs d’utilité en fonction du VEMS utilisées dans le scénario de référence .. 47
Tableau 18. Valeurs d’utilité annuelle associées à la survie post-greffe .. 47
Tableau 19. Coût annuel de suivi de la fonction hépatique ... 52
Tableau 20. Coût de prise en charge des événements indésirables dans le modèle par occurrence 52
Tableau 22. Coûts de prise en charge des patients atteints de mucoviscidose par poste de coût et par atteinte de la fonction pulmonaire repris de l’étude de Colombo et al. (2013) 54
Tableau 25. Détail du calcul du coût de traitement des EP par antibiothérapie IV à domicile 56
Tableau 26. Détermination du coût de prise en charge des exacerbations pulmonaires dans le modèle 57
Tableau 27. Coût de transplantation pulmonaire et coût annuel des séjours hospitaliers de suivi des greffes 57
Tableau 28. Détail du coût de traitement post-transplantation .. 58
Tableau 29. Détail du coût de suivi post-transplantation .. 59
Tableau 30. Coût total de suivi post-greffe, par année de suivi .. 59
Tableau 31. Résultats du scénario 1 (Optimiste) .. 65
Tableau 32. Résultats du scénario 2 (Intermédiaire) .. 65
Tableau 33. Résultats du scénario 3 (Pessimiste) ... 65
Tableau 34. Coûts du scénario 1 (coûts moyens par patient actualisés) ..66
Tableau 35 Coûts du scénario 2 (coûts moyens par patient actualisés) ..66
Tableau 36. Coûts du scénario 3 (coûts moyens par patient actualisés) ..67
Tableau 37. Résultats sur la médiane de survie en fonction des scénarios 1 et 2 ...68
Tableau 38. Résultats relatifs à l’évolution de la maladie et à l’impact des traitements sur l’état de santé des patients, en fonction des scénarios 1 et 2 ...68
Tableau 39. Résultats de la médiane de survie en fonction du scénario 3 ..68
Tableau 40. Résultats relatifs à l’évolution de la maladie et à l’impact des traitements sur l’état de santé des patients pour le scénario 3 ..69
Tableau 41. Résultats du scénario 1 à un horizon temporel de 5 ans par catégorie d’âge70
Tableau 42. Résultats du scénario 1 à un horizon temporel de 10 ans par catégorie d’âge70
Tableau 43. Résultats du scénario 1 à un horizon temporel de 20 ans par catégorie d’âge71
Tableau 44 Résultats du scénario 1 avec un taux d’actualisation de 0%, 3,5% et 6%71
Tableau 45 Résultats du scénario 1 basée sur les taux d’observance observés pendant les essais TRAFFIC et TRANSPORT par catégorie d’âge (96,5%) ...73
Tableau 46 Résultats du scénario 1 basée sur une observance de 100% par catégorie d’âge73
Tableau 47. Résultats des analyses en scénario sur les principales hypothèses de modélisation74
Tableau 48. ASD de l’analyse de référence ..76
Tableau 49. Distributions associées aux données utilisées pour réaliser les ASP dans le modèle et les paramètres ..79
Tableau 50. Paramètres associés aux coûts de prise en charge de la pathologie dans les ASP80
Tableau 51. RDCR par QALY gagnée dans les 3 scénarios d’évolution du VEMS (avec le scénario 3 corrigé) ainsi qu’en utilisant la fonction logistique ...87
Tableau 52. Comparaison des caractéristiques des populations utilisées dans le modèle, issues du registre français 201332 et du CFFPR 199336 ...91
Tableau 53. Exemple de présentation des résultats par groupe d’âge pour une analyse (valeurs supposées actualisées) ...95
Tableau 54. Paramètres associés aux caractéristiques individuelles prises en compte dans le modèle de Liou et al. ..102

LISTE DES FIGURES

Figure 1. Evolution des variations absolues du VEMS par rapport à la valeur à l’inclusion (%)17
Figure 2. Structure du modèle ..25
Figure 3. Projection de la survie des patients selon la fonction de survie retenue dans la simulation comparée à la survie dans la population générale française ..26
Figure 4. Projection de la survie des patients selon une fonction de survie avec ou sans segmentation ..37
Figure 5. Pyramide des âges suivis dans le registre français de la mucoviscidose39
Figure 6. VEMS moyen par groupe d’âge chez les patients homozygotes F508del issu des essais TRAFFIC et TRANSPORT, et du registre français de la mucoviscidose40
Figure 7. Evolution du VEMS en fonction de l’âge dans la cohorte CFFR, d’après Liou et al.201040
Figure 8 Diagramme de Tornado des résultats de l’ASD pour le scénario 1 (optimiste)77
Figure 9 Diagramme de Tornado des résultats de l’ASD pour le scénario 2 (intermédiaire)78
Figure 10. Résultats de l’ASP sur le plan coût-efficacité pour le scénario 1 ...82
Figure 11. Résultats de l’ASP sur le plan coût-efficacité pour le scénario 2 ...83
Figure 12. Dynamique de diminution du VEMS en valeur absolue par âge au-delà de 24 semaines en fonction des hypothèses d’extrapolation du VEMS pour le SoC seul et pour lumacafor/ivacaftor + SoC ...86
Figure 13. Survie modélisée (ici, présentation du scénario 2) ...87
Figure 14. Modèle de survie .. 93
Figure 15. Moyenne des VEMS (%) par âge, en 1992, 2001 et 2013, issue du registre français de la mucoviscidose .. 94
Figure 16. Dynamique de dégradation du %VEMS par âge en fonction du mode d’extrapolation 103
Figure 17. Evolution du VEMS au cours du temps générée par le modèle, en fonction du mode d’extrapolation, pour un patient ayant un VEMS de 77% à l’entrée du modèle (VEMS moyen d’après le registre français) ... 103
Liste des abréviations

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMM</td>
<td>Autorisation de Mise sur le Marché</td>
</tr>
<tr>
<td>ATU</td>
<td>Autorisation Temporaire d'Utilisation</td>
</tr>
<tr>
<td>CCAM</td>
<td>Classification Commune des Actes Médicaux</td>
</tr>
<tr>
<td>CFTR</td>
<td>Cystic Fibrosis Transmembrane conductance Regulator</td>
</tr>
<tr>
<td>EI</td>
<td>Effet Indésirable</td>
</tr>
<tr>
<td>EIG</td>
<td>Effet Indésirable Grave</td>
</tr>
<tr>
<td>ENC</td>
<td>Études nationales de coûts à méthodologie commune</td>
</tr>
<tr>
<td>EP</td>
<td>Exacerbation Pulmonaire</td>
</tr>
<tr>
<td>GHM</td>
<td>Groupe Homogène de Malades</td>
</tr>
<tr>
<td>HR</td>
<td>Hazard Ratio</td>
</tr>
<tr>
<td>IC</td>
<td>Intervalle de Confiance</td>
</tr>
<tr>
<td>IMC</td>
<td>Indice de Masse Corporelle</td>
</tr>
<tr>
<td>ITT</td>
<td>Intention de Traiter</td>
</tr>
<tr>
<td>IV</td>
<td>Intraveineuse</td>
</tr>
<tr>
<td>IVA</td>
<td>Ivacaftor</td>
</tr>
<tr>
<td>LPP</td>
<td>Liste des Produits et Prestations</td>
</tr>
<tr>
<td>LUM</td>
<td>Lumacaftor</td>
</tr>
<tr>
<td>MMRM</td>
<td>Modèle Mixte à Mesures Répétées</td>
</tr>
<tr>
<td>NABM</td>
<td>Nomenclature nationale des Actes de Biologie Médicale</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for health & Care Excellence</td>
</tr>
<tr>
<td>PNDS</td>
<td>Protocole National de Diagnostic et de Soins</td>
</tr>
<tr>
<td>PP</td>
<td>Per protocol</td>
</tr>
<tr>
<td>ppFEV1</td>
<td>percent-predicted Forced Expiratory Volume in 1 second</td>
</tr>
<tr>
<td>QALY</td>
<td>Quality Adjusted Life Year</td>
</tr>
<tr>
<td>RDCR</td>
<td>Rapport Différentiel Coûts-Résultats</td>
</tr>
<tr>
<td>RR</td>
<td>Risque Relatif</td>
</tr>
<tr>
<td>SE</td>
<td>Erreur-type</td>
</tr>
<tr>
<td>SMC</td>
<td>Scottish Medicines Consortium</td>
</tr>
<tr>
<td>SoC</td>
<td>Standard of Care, prise en charge standard</td>
</tr>
<tr>
<td>VEMS</td>
<td>Volume Expiratoire Maximum Seconde</td>
</tr>
</tbody>
</table>
1. **Avis de la CEESP**

1.1 **Objectif et contexte de l’étude**

L’étude présentée par l’industriel évalue l’efficience d’Orkambi® (lumacaftor/ivacaftor), en association à un traitement symptomatique standard, dans le traitement de la mucoviscidose, maladie rare génétique autosomique multi-systémique qui entraîne un décès prématuré des patients, dans la population d’indication d’Orkambi® : patients âgés de 12 ans et plus, homozygotes pour la mutation F508del sur le gène CFTR.

Cette évaluation soutient une demande d’inscription du laboratoire VERTEX Pharmaceuticals sur la liste des médicaments agréés à l’usage des collectivités et divers services publics, pour laquelle l’industriel revendique une ASMR de niveau II.

Le chiffre d’affaires prévisionnel TTC la 2ème année pleine de commercialisation d’Orkambi® est attendu être très supérieur à 20 millions d’euros PPTTC (XXXXX PPTTC).

1.2 **Conformité de l’étude médico-économique aux recommandations méthodologiques de la HAS**

1.2.1 **Analyse coût-résultat**

La méthode sur laquelle repose l’étude médico-économique réalisée par l’industriel relative à lumacaftor/ivacaftor associé aux thérapies symptomatiques standards (SoC, « standard of care ») dans l’indication est conforme aux recommandations méthodologiques de la HAS, mais soulève des réserves importantes, qui augmentent très fortement l’incertitude attachée aux résultats présentés.

En particulier, l’absence de données de morbi-mortalité liées à l’effet du traitement et le manque de données à long terme (au-delà de 48 semaines) relatives au critère intermédiaire utilisé dans le modèle – variation de la valeur théorique du VEMS en valeur absolue – imposent de faire des hypothèses difficilement vérifiables sur l’extrapolation de la dynamique d’évolution de la valeur du VEMS à long terme et de la morbi-mortalité.

Par ailleurs, plusieurs choix relatifs aux données introduites dans le modèle sont favorables au produit et ont un impact élevé sur le RDCR. Ces sources d’incertitude concernent principalement :

- l’observance appliquée uniquement sur les coûts mais pas sur l’effet traitement de lumacaftor/ivacaftor ;
- le double compte de l’effet traitement de lumacaftor/ivacaftor sur les exacerbations pulmonaires ;
- la sous-estimation de la survie associée au SoC seul ;
- l’incertitude sur l’ensemble des coûts introduits dans le modèle dont le périmètre n’est de plus pas limité aux patients âgés de 12 ans et plus homozygotes pour la mutation F508del du gène CFTR ;
- les analyses de sensibilité, présentées pour explorer l’incertitude dans les analyses en scénario, incomplètes ou erronées.

L’ensemble des réserves est synthétisé dans le Tableau 2 et détaillé dans l’annexe 2 de l’avis.
1.2.2 Analyse d’impact budgétaire

Le choix d’intégrer dans le dossier une analyse d’impact budgétaire est laissé à la libre appréciation de l’industriel. Dans le cadre de ce dossier, aucune analyse d’impact budgétaire n’a été fournie par l’industriel.

1.3 Conclusion de la CEESP sur l’efficience

► Contexte général de l’évaluation et portée de la conclusion

Il n’existe à ce jour, pas de médicament ou d’autre technologie de santé agissant directement sur le mécanisme physiopathologique de la mucoviscidose chez les patients porteurs de la mutation F508del homozygotes en alternative au traitement lumacaftor/ivacaftor.

La présente évaluation médico-économique porte sur la comparaison du lumacaftor/ivacaftor en association aux thérapies symptomatiques standards (SoC) versus les thérapies symptomatiques standards seules chez les patients âgés de 12 ans et plus, homozygotes pour la mutation F508del du gène CFTR (soit 25% des patients atteints de mucoviscidose en France). Cette population cible est susceptible d’être élargie aux enfants de moins de 12 ans (soit 42% des patients) ; un essai clinique étant actuellement en cours chez des sujets plus jeunes¹.

► Conclusion relative à l’évaluation

La CEESP souligne que les résultats présentés reposent sur un critère biologique intermédiaire avec une incertitude forte quant à son extrapolation à long terme (au-delà de 48 semaines).

Orkambi® (lumacaftor/ivacaftor) est associé à un RDCR de 574 390€ par QALY gagné sur l’ensemble de la population concernée par l’indication. Le différentiel de coût entre les deux stratégies sur l’horizon vie entière est de 1 300 000€ pour un gain de 2,3 QALY (taux d’actualisation 4%).

Sous les hypothèses et les choix méthodologiques retenus dans l’analyse de référence, le choix d’associer Orkambi® au traitement symptomatique standard est efficient avec un degré de certitude de 90% pour une disposition à payer de 632 000 €/QALY.

Le prix revendiqué pour lumacaftor/ivacaftor de XXXXX € PFHT par boîte de 112 comprimés a un impact très important sur les résultats : une diminution du prix de lumacaftor/ivacaftor se traduit par une réduction proportionnellement équivalente du RDCR.

De plus, ces résultats reposent sur une hypothèse d’extrapolation non étayée de l’évolution du VEMS favorable au produit. En effet, dans l’analyse de référence, l’effet traitement de lumacaftor/ivacaftor observé à moyen terme (c’est-à-dire entre les semaines 4 et 48) est supposé être conservé sur la vie entière. Deux analyses en scénario montrent qu’en adoptant des hypothèses plus défavorables au produit, le RDCR peut varier nettement :

- En supposant un effet traitement à long terme [après 24 semaines] sur le VEMS deux fois supérieur à l’effet traitement du SoC seul, le RDCR est de 622 131€ par QALY gagné ;
- En supposant un effet traitement de lumacaftor/ivacaftor en association au SoC identique à celui du SoC seul passé 24 semaines, le RDCR est de 1 286 625€ par QALY gagné.

De plus, le RDCR de lumacaftor/ivacaftor en association au SoC comparé au SoC seul varie en fonction de l’âge des patients traités. La transposition de ces résultats en vie réelle dépendra par conséquent de l’âge à l’initiation du traitement (voir Tableau 1).

Tableau 1. RDCR par QALY en fonction de l’âge à l’initiation du traitement

<table>
<thead>
<tr>
<th>RDCR/QALY</th>
<th>12 – 17</th>
<th>18 – 24</th>
<th>25 – 34</th>
<th>35+</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse de référence</td>
<td>514 563€</td>
<td>620 980€</td>
<td>694 708€</td>
<td>946 615€</td>
<td>574 390€</td>
</tr>
</tbody>
</table>

En plus de la forte incertitude autour de l’extrapolation du VEMS, il existe d’autres paramètres du modèle dont les choix sont favorables à lumacaftor/ivacaftor qui influencent fortement le RDCR, en particulier l’observance : si un même taux d’observance est appliqué aux données d’efficacité et aux données de coût (soit 96,5%), le RDCR augmente à 681 012€ par QALY gagné.

La CEESP souligne que la méthode sur laquelle repose l’étude médico-économique relative à lumacaftor/ivacaftor associé aux thérapies symptomatiques standards soulève des réserves importantes, qui augmentent très fortement l’incertitude attachée aux résultats présentés.

Orkambi® (lumacaftor/ivacaftor) est associé à un RDCR extrêmement élevé de 574 390€ par QALY gagné sur l’ensemble de la population concernée par l’indication.

La valeur du RDCR est principalement liée au prix revendiqué du lumacaftor/ivacaftor, avec un coût de traitement représentant plus de 25% du coût total de prise en charge.

Ce résultat est d’autant plus discutable, qu’il est calculé en s’appuyant sur un critère biologique intermédiaire avec une incertitude quant à son extrapolation au-delà de 48 semaines et qu’en outre il repose sur des données et des hypothèses, dont l’analyse critique a montré qu’elles étaient principalement toutes favorables au produit évalué. En particulier, le choix d’hypothèses moins optimistes concernant l’évolution du VEMS conduit à des RDCR compris entre 622 131€/QALY et 1 286 625€/QALY.

Par conséquent, la CEESP considère que les conditions de l’efficience du lumacaftor/ivacaftor en association aux thérapies standards chez les patients âgés de 12 ans et plus, homozygotes pour la mutation F508del du gène CFTR ne sont pas réunies au prix revendiqué par l’industriel, et ne pourront être atteintes que par une baisse du prix très significative.
1.4 Données complémentaires

Des données comparatives robustes concernant la survie associée aux traitements sont indispensables pour améliorer l'estimation de l'efficience de ce traitement.

Les données de l'étude d'extension PROGRESS devraient être disponibles pour le 2ᵉ trimestre 2016.
2. Synthèse de l’analyse critique
Les points de critique identifiés dans l’analyse détaillée sont hiérarchisés selon trois niveaux².

RésERVE mineure (-) : élément non conforme aux recommandations en vigueur, mais qui est justifié ou dont l’impact attendu sur les conclusions est négligeable.

RésERVE importante (+) : élément non conforme aux recommandations en vigueur, avec un impact attendu important sur les conclusions (en particulier en termes d’incertitude).

RésERVE majeure (++) : élément non conforme aux recommandations en vigueur qui invalide tout ou partie de l’étude économique.

Tableau 2. Synthèse de l’analyse critique de l’évaluation économique

<table>
<thead>
<tr>
<th>Libellé de la réserve</th>
<th>-</th>
<th>+</th>
<th>++</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choix structurants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perspective collective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>partiellement respectée dans l’évaluation des coûts et des résultats : absence de prise en compte du reste à charge des patients pour certaines prestations et valorisation des effets traitement non réalisée selon les préférences de la population générale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modélisation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population simulée : incertitude sur une éventuelle hétérogénéité entre les caractéristiques des patients simulés dans le modèle et les caractéristiques des patients français issus du registre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recours à une équation de risque permettant d’estimer la survie des patients considérée comme valide mais avec un éventuel biais d’hétérogénéité entre les populations utilisées pour dériver la fonction de survie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incertitude sur l’estimation de la survie au-delà de 35 ans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Méthodologie utilisée par les auteurs afin de calculer l’évolution du VEMS sous lumacaftor/ivacaftor au cours des 24 premières semaines critiquable et favorable au produit évalué</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L’absence de données de morbi-mortalité liées à l’effet du traitement et le manque de maturité des données relatives au critère intermédiaire utilisé dans le modèle concernant la variation de la valeur théorique du VEMS (en valeur absolue), conduisent à des hypothèses d’extrapolation de la dynamique d’évolution difficilement vérifiables. Ces éléments sont accentués par :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- l’absence de prise en compte d’une diminution du VEMS différente entre les patients de 25 à 34 ans et les patients de plus de 35 ans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Les choix retenus relatifs aux données introduites dans le modèle, favorables au produit et ayant un impact élevé sur le RDCR, qui concernent principalement :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- l’observance appliquée différemment sur les coûts et sur l’effet traitement de lumacaftor/ivacaftor,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- l’hypothèse d’indépendance des effets du traitement sur le VEMS et les exacerbations pulmonaires forte et discutable, susceptible de conduire à un double compte des effets bénéfiques du traitement lumacaftor/ivacaftor sur les exacerbations pulmonaires</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- la sous-estimation de la survie associée au SoC seul.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absence de justification et d’évaluation de l’impact sur les résultats des hypothèses suivantes :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- non prise en compte de l’ensemble des exacerbations pulmonaires</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| - poids en z-score stable pendant toute la durée de l’horizon temporel chez les pa-

² Cette classification indique l’impact des éléments de méthodologie sur la robustesse des conclusions de l’analyse économique, indépendamment des raisons pour lesquelles un élément est jugé non conforme aux recommandations en vigueur (choix méthodologique non pertinent, manque de justification, non disponibilité des données, etc.).
Mesure et valorisation des états de santé

- Forte hétérogénéité dans les méthodes et les données utilisées pour estimer les résultats de santé et conformité partielle à la méthodologie recommandée par la HAS mais valeurs d’utilité retenues dans le modèle acceptables.

- Incohérence entre l’hypothèse du modèle selon laquelle les effets du traitement sur le VEMS et le nombre d’exacerbations pulmonaires sont indépendants et la méthode d’estimation des désutilités associées à l’occurrence des exacerbations pulmonaires.

Mesure et valorisation des coûts

- Incertitude liée à l’estimation de l’ensemble des coûts du modèle :
 - estimation des coûts à partir de patients atteints de mucoviscidose et non uniquement à partir de patients âgés de 12 ans et plus homozygotes pour la mutation F508del du gène CFTR correspondant à la population modélisée ;
 - manque de description détaillée dans les méthodes utilisées pour mesurer et calculer certains coûts, en particulier, le coût du SoC ;
 - incohérences dans l’estimation des coûts de traitement et de suivi post-greffe.

Présentation des résultats de l’analyse de coût non conforme et qui porte à confusion

Résultats et analyses de sensibilité

- Analyses de sensibilité présentées pour explorer l’incertitude dans les analyses en scénario incomplètes ou erronées, en particulier, absence d’analyses de sensibilité en fonction des classes d’âge pour la majorité des analyses effectuées.
3. **Annexe 1 – Contexte de la demande**

3.1 Objet de la demande

L'évaluation économique de l'ivacaftor-lumacaftor (Orkambi®) dans le traitement de la mucoviscidose chez les patients âgés de 12 ans et plus homozygotes pour la mutation F508del sur le gène CFTR est déposée auprès de la CEESP par le laboratoire VERTEX Pharmaceuticals dans le cadre d’une première inscription sur la liste des médicaments agréés à l’usage des collectivités et divers services publics.

La demande entre dans le cadre du décret du 2 octobre n°2012-116 :

- l’industriel revendique une ASMR II pour cette indication ;
- le chiffre d’affaires annuel attendu a été estimé à près de XXXXX TTC après 2 années de commercialisation ;
- l’industriel revendique un impact significatif sur les dépenses de l’Assurance maladie.

3.2 Produit et indication concernés par la demande

Indication concernée par la demande

Le produit est indiqué dans le traitement de la mucoviscidose chez les patients âgés de 12 ans et plus, homozygotes pour la mutation F508del sur le gène CFTR, en association à un traitement symptomatique standard complet. La demande d’évaluation de l’efficience de l’association ivacaftor-lumacaftor porte sur la totalité de l’indication ayant obtenu une AMM et faisant actuellement l’objet d’une demande de remboursement auprès de la HAS.

La mucoviscidose est une maladie rare, génétique, autosomique récessive, multi-systémique la plus fréquemment rencontrée chez les populations de type caucasien, avec une incidence de 1/3200. Elle entraîne un décès prématuré, l’âge médian de décès des patients atteints de cette maladie étant de 31 ans. En France, 200 enfants naissent chaque année avec la mucoviscidose.

Près de 2000 mutations génétiques sont à l’origine de cette pathologie. L’une d’entre-elle, la mutation F508del, entraîne à la fois un défaut de production et le dysfonctionnement de la protéine CFTR, canal chlorure normalement présent à la surface des cellules épithéliales de multiples organes. La défaillance de cette protéine provoque une accumulation de mucus anormalement épais et visqueux au sein des organes ayant pour conséquences une obstruction bronchique, une insuffisance pancréatique, des dysfonctionnements hépatiques, des troubles gastro-intestinaux, une atteinte des appareils reproducteurs et une hyper concentration de la sueur en chlorure de sodium, pouvant être responsables de déshydratations sévères. La mutation F508del du gène CFTR est présente chez 42% des patients atteints de mucoviscidose et conduit à une forme relativement sévère de mucoviscidose.

Stratégie thérapeutique

Dès l’établissement du diagnostic (à la naissance généralement), une prise en charge adaptée et multidisciplinaire est proposée au patient. Elle repose principalement sur une prise en charge symptomatique, nécessaire à vie et qui comprend :

Une prise en charge de l’atteinte broncho-pulmonaire:

- kinésithérapie respiratoire quotidienne ;
- aérosolthérapie et traitements inhalés : bronchodilatateurs, rhDNase, antibiotiques, corticoïdes inhalés, sérum salé hypertonique et du matériel d’aérosol ;
- antibiothérapie pour traiter la colonisation ou l’infection par des bactéries telles que : S. au-reus, H. influenzae, P. aeruginosa, etc…
Une prise en charge nutritionnelle et digestive :
- alimentation riche et équilibrée qui peut être complétée par des aliments diététiques destinés à des fins médicales, des vitamines et minéraux ;
- supplémentation en chlorure de sodium ;
- extraits pancréatiques en cas d’insuffisance pancréatique.

Une éducation thérapeutique pour permettre au patient de mieux comprendre et de mieux gérer sa maladie, ses symptômes et ses traitements afin d’améliorer sa qualité de vie.
La prévention qui repose sur le respect du calendrier vaccinal, la vaccination antigrippale, antipneumococcique et anti-hépatite A.
La transplantation pulmonaire, voire hépatique, peut être proposée en dernier recours pour les formes avancées de la maladie.

En parallèle de cette prise en charge symptomatique ou substitutive, il n’existe, à ce jour, aucun traitement étiologique disponible pour les patients porteurs de la mutation F508del. En effet, Kalydeco® à base d’ivacaftor seul, premier traitement spécifique de la mucoviscidose s’adresse uniquement aux patients porteurs des mutations G551D, G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N ou S549R et a obtenu un SMR important et un ASMR II dans cette indication. L’ivacaftor seul n’a pas montré d’efficacité chez les patients porteurs de la mutation F508del. Le prix de Kalydeco 150 mg est de 19 521,8€ TTC pour une boîte de 56 comprimés.

Le suivi des patients est assuré par des professionnels exerçant dans les Centres de Ressources et de Compétences pour la Mucoviscidose (CRCM).

Données cliniques

Les données cliniques disponibles reposent sur deux études de phase III, internationales, randomisées, en double aveugle, contrôlées versus placebo : TRAFFIC et TRANSPORT, et d’une étude d’extension PROGRESS. Ces études ont inclus des patients atteints de mucoviscidose, homozygotes pour la mutation F508del et âgés de plus de 12 ans, ce qui correspond à la définition de la population d’AMM.

Études TRAFFIC et TRANSPORT

Ces deux études ont évalué deux schémas thérapeutiques du lumacaftor à la dose de 400 mg toutes les 12 heures (Orkambi®) ou 600 mg/j, associés à l’ivacaftor à la dose 250 mg toutes les 12 heures, versus placebo sur 24 semaines de traitement.
Tableau 3. Principales caractéristiques des études cliniques de phase III TRAFFIC et TRANSPORT

<table>
<thead>
<tr>
<th>Critères</th>
<th>TRAFFIC</th>
<th>TRANSPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critère d’évaluation principal</td>
<td>Variation absolue du VEMS après 24 semaines de traitement par rapport à l’inclusion</td>
<td>24 semaines</td>
</tr>
<tr>
<td>Durée de l’étude</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Nombre de patients randomisés | B1 : Lumacaftor 2x200mg / ivacaftor (Orkambi®): 182
B2 : Lumacaftor 600mg /ivacaftor : 183
B3 : Placebo : 184 | B1 : Lumacaftor 2x200mg / ivacaftor (Orkambi®): 187
B2 : Lumacaftor 600mg /ivacaftor : 185
B3 : Placebo : 187 |
| Age moyen | 25 ans | 25 ans |
| VEMS moyen à l’inclusion | 60,7 % | 60,5 % |
| Répartition en fonction du VEMS initial | | |
| < 40% | 35 (6,4%) | 46 (8,2%) |
| ≥ 40% et < 70% | 360 (65,6%) | 352 (63%) |
| ≥ 70% et < 90% | 146 (26,6%) | 149 (26,6%) |
| ≥ 90% | 2 (0,4%) | 7 (1,2%) |
| Variation du VEMS à 24 semaines (différence versus placebo) (%) | B1 : Lumacaftor 2x200mg / ivacaftor (Orkambi®): 2.6
B2 : Lumacaftor 600mg /ivacaftor : 4.03 | B1 : Lumacaftor 2x200mg / ivacaftor (Orkambi®): 3.0
B2 : Lumacaftor 600mg /ivacaftor : 2.62 |
| Analyse poolée | B1 : Lumacaftor 2x200mg / ivacaftor (Orkambi®): 2.8
B2 : Lumacaftor 600mg /ivacaftor : 3.32 | |

Étude PROGRESS

L’objectif de cette étude d’extension était d’évaluer la tolérance à long terme et la sécurité d’emploi de l’association lumacaftor/ivacaftor. Les patients des bras de traitement actif continuaient le même traitement que dans les essais TRAFFIC et TRANSPORT, tandis que les patients des groupes placebo étaient randomisés selon un ratio 1:1 pour recevoir soit lumacaftor 400 mg/ivacaftor 250 mg deux fois par jour, soit l’autre association posologique lumacaftor 600mg/ivacaftor 2x250mg. Les patients de cette cohorte sont suivis pendant 96 semaines. 1030 patients ont été inclus dans cette étude d’extension. Une analyse intermédiaire à 24 semaines a été réalisée et a montré le maintien et la durée de l’effet de lumacaftor/ivacaftor sur le VEMS à 48 semaines.
Le registre français de la mucoviscidose

En 1992, l’association Vaincre la mucoviscidose créé l’Observatoire National de la Mucoviscidose devenu en 2007 le Registre Français de la Mucoviscidose. Labellisé en 2009 par le Comité National des Registres Maladie Rare, le Registre français de la Mucoviscidose a pour objectifs :

- d’améliorer la connaissance des caractéristiques médicales et sociales de la population atteinte de mucoviscidose et de l’impact des interventions thérapeutiques ;
- de mieux appréhender le coût socio-économique de la mucoviscidose ;
- de créer une base de données mise à disposition des médecins et chercheurs.

La population du registre est composée des personnes atteintes de mucoviscidose et suivies par les centres de soins en France (métropole, île de la Réunion et Guadeloupe) participant au Registre. Le recueil des données est effectué par les équipes des centres une fois par an à partir d’un questionnaire transmis soit via internet sécurisé, soit à partir de logiciels patients, soit sous forme d’un document papier. Les informations demandées font référence à l’année échue et concernent l’identification semi-anonyme du patient, le diagnostic, le suivi médical, les thérapeutiques utilisées, les données anthropométriques, fonctionnelles respiratoires, bactériologiques et évolutives. Des questionnaires thématiques recueillent des données sur les grossesses, le complexe Burkholderia Cepacia et l’inclusion dans les essais cliniques.

6275 patients sont suivis régulièrement dans ce registre en 2013, dont 2 660 présentant spécifiquement une mutation homozygote F508del. Place dans la stratégie thérapeutique

Le laboratoire VERTEX Pharmaceuticals considère que lumacaftor/ivacaftor est un traitement de fond, à utiliser d’emblée chez les patients atteints de mucoviscidose, âgés de 12 ans et plus, homozygotes pour la mutation F508del du gène CFTR en association à un traitement symptomatique standard complet.

La posologie recommandée est de 2 comprimés (chaque comprimé contient 200mg de lumacaftor et 125mg d’ivacaftor) par voie orale toutes les 12 heures. Les comprimés doivent être pris immédiatement avant ou après un repas ou une collation contenant des graisses.
D’après le RCP, le traitement doit être poursuivi à vie sauf en cas de transplantation pulmonaire où le traitement doit être arrêté.

► Population cible

La population cible est définie par l’industriel comme les patients atteints de mucoviscidose, âgés de 12 ans et plus et homozygotes pour la mutation F508del. 25% des patients de plus de 12 ans atteints de mucoviscidose sont porteurs de cette mutation. La taille de cette population a été estimée par l’industriel à partir du Registre français de la mucoviscidose en prenant en compte une augmentation de la prévalence de la maladie de 2% par an.

A partir de ces données, la population cible a été estimée par l’industriel à 1750 patients en 2016.

► Prix et montant remboursable

Le laboratoire revendique un prix annuel de XXXXX € PFHT. Ce prix annuel est calculé par l’industriel d’après un prix de XXXXX € PFHT la boîte de 112 comprimés et une fréquence d’utilisation de 2 comprimés deux fois par jour.

Le montant remboursable annuel attendu à deux ans au prix revendiqué est estimé à XXXXX TTC dans la population d’analyse, sous l’hypothèse d’une population rejointe estimée à XXXXX patients au moment de la demande.

3.3 Historique d’autorisation de mise sur le marché

L’autorisation européenne de mise sur le marché du lumacaftor/ivacaftor dans l’indication concernée par la demande a été accordée le 19 novembre 2015.

Avant l’obtention de l’autorisation de mise sur le marché (AMM), le produit bénéficiait d’une autorisation temporaire d’utilisation (ATU) de cohorte octroyée en octobre 2015. Le laboratoire a mis à disposition son médicament en décembre 2015. L’ATU a pris fin mi-mars 2016 et a inclus 369 patients.

3.4 Historique du remboursement

Il s’agit de la première demande d’inscription de lumacaftor/ivacaftor sur la liste des médicaments agréés à l’usage des collectivités et divers services publics.

Dans le cadre des ATU, lumacaftor/ivacaftor est mis à disposition par le laboratoire Vertex Pharmaceuticals à un prix de XXXXX € la boîte de 112 comprimés.

A ce jour, lumacaftor/ivacaftor est remboursé en Allemagne depuis le 15 décembre 2015 au prix de XXXXX € PFHT par boîte de 112 comprimés.

En Grande Bretagne, une évaluation de lumacaftor/ivacaftor est réalisée par le NICE ; le rapport non définitif qui est actuellement en consultation publique montre que les conditions de l’efficience ne sont pas réunies pour rembourser ce médicament.

3.5 Documents support de l’analyse critique

L’analyse critique est fondée sur cinq documents transmis par l’industriel à la HAS :

- Un rapport de présentation
- Un rapport technique de l’étude d’efficience
- Une version électronique du modèle d’efficience au format Excel
- La bibliographie du rapport technique
Une liste de questions techniques a été adressée à l'industriel le 9 février 2016. Une réponse écrite a été fournie le 23 mars 2016. L'analyse critique tient compte de ces réponses.

Des documents complémentaires ont également été fournis dans le dossier :

- Rapport soumis à la Commission de la transparence
- Le dossier à destination du CEPS

L'analyse critique évalue la recevabilité de l'évaluation économique au regard du guide méthodologique en vigueur (HAS, 2011).
4. Annexe 2 - Analyse critique détaillée de l’étude médico-économique

4.1 Objectif de l’étude médico-économique proposée

4.1.1 Objectif tel que proposé par les auteurs

L’objectif de cette modélisation économique est d’évaluer l’efficience de lumacaftor/ivacaftor (Orkambi®) associé au traitement symptomatique standard de la mucoviscidose par rapport à au traitement symptomatique standard seul chez les patients atteints de mucoviscidose, homozygotes pour la mutation F508del et âgés de plus de 12 ans.

4.1.2 Analyse critique de l’objectif

L’approche choisie d’une analyse coût-résultat répond à l’objectif d’une évaluation de l’efficience.

L’évaluation proposée a pour objectif d’analyser l’efficience de lumacaftor/ivacaftor dans l’ensemble de la population de l’AMM et demandée au remboursement.

Il est à noter que l’objectif de l’étude médico-économique n’a pas été explicitement défini par les auteurs dans le rapport technique. Choix structurants concernant l’étude médico-économique

4.1.1 Les choix structurants tels que présentées par les auteurs

► L’analyse économique et le choix du critère de résultat

L’étude réalisée est une analyse coût-utilité dont le résultat est exprimé en coût par QALY.

L’étude est complétée par une analyse de type coût-efficacité dont le critère de résultat de santé est le nombre d’années de vie gagnées.

► La perspective

La perspective retenue pour l’évaluation des coûts est qualifiée de collective (tous payeurs).

Les effets des traitements sont évalués selon la perspective des patients et valorisés selon les préférences de la population générale dans l’analyse coût-utilité.

► L’horizon temporel et l’actualisation

L’horizon temporel choisi par l’industriel est un horizon « vie entière » dans l’analyse de référence. Des horizons temporels de 5, 10 et 20 ans sont testés en analyse en scénario.

Le taux d’actualisation est de 4% les 30 premières années. Au-delà, le taux d’actualisation est réduit à 2%. Il est appliqué aux coûts et aux résultats de chaque traitement. Des taux de 0% et 6% sont testés en analyses de sensibilité.

► La population d’analyse

La population d’analyse retenue pour l’évaluation économique dans l’analyse de référence est celle des patients de l’indication de lumacaftor/ivacaftor : les patients atteints de mucoviscidose, homozygotes pour la mutation F508del du gène CFTR et âgés de plus de 12 ans.

► Les stratégies comparées

Lumacaftor/ivacaftor étant le premier traitement étiologique de la mucoviscidose dans cette population, aucun traitement comparable n’est disponible sur le marché. Les stratégies comparées sont :

• Lumacaftor/ivacaftor (Orkambi®) + Standard of Care
• **Standard of Care**

La définition du Standard of Care (SoC) retenue par l’industriel consiste en la prise en charge symptomatique actuelle du patient atteint de mucoviscidose. Elle repose sur :

- une prise en charge respiratoire composée de dornase alpha par voie inhalée, mannitol inhalé, corticoïdes inhalés et bronchodilatateurs, antibiothérapies en cas d’exacerbation ou d’infection chronique, solutés salés hypertoniques, kinésithérapie respiratoire ;
- une prise en charge nutritionnelle composée de vitamines liposolubles A, D, E, K, oligo-éléments (Fer, Zinc, Sélenium), supplémentation en chlorure de sodium, extraits pancréatiques.

4.1.2 Analyse critique concernant les choix structurants

► **L’analyse économique et le choix du critère de résultat**

Le choix d’une analyse principale de type coût-utilité complétée par une analyse coût-éfficacité prenant l’année de vie gagnée comme critère de résultat est conforme aux recommandations méthodologiques de la HAS.

► **La perspective**

La perspective retenue est partiellement conforme aux recommandations méthodologiques de la HAS. Le reste à charge des patients relatif au coût des transports n’a pas été pris en compte ; de même, le coût lié au temps des aidants et à l’assistance à domicile par un professionnel de santé n’ont pas été retenus alors qu’ils peuvent être considérés comme liés directement à la production des interventions évaluées notamment concernant l’observance. Les effets des traitements n’ont pas été valorisés selon les préférences de la population générale dans l’analyse coût-utilité.

► **L’horizon temporel et l’actualisation**

Le choix de l’horizon temporel est cohérent avec le caractère chronique de la maladie et conforme avec les recommandations méthodologiques de la HAS. En effet, la mucoviscidose est une maladie génétique, dont le dépistage néonatal est systématique depuis 2002. A ce jour, l’espérance de vie de ces patients est de plus de 40 ans. Les horizons temporels testés en analyse de sensibilité sont acceptables, l’âge médian de décès des patients atteints de cette pathologie étant de 31 ans. Le taux d’actualisation retenu dans l’analyse de référence est conforme aux recommandations méthodologiques de la HAS.

► **La population d’analyse**

La définition de la population est cohérente avec l’objectif de l’évaluation économique : elle recouvre l’ensemble de l’indication de l’AMM octroyée à lumacaftor/ivacaftor correspondant également à la population demandée au remboursement.

► **Les stratégies comparées**

Le comparateur SoC défini et identifié par l’industriel est effectivement le comparateur cliniquement pertinent dans l’évaluation de l’efficience de lumacaftor/ivacaftor dans la prise en charge de la mucoviscidose des patients homozygotes F508del.

Analyse de la correspondance entre le comparateur défini dans l’évaluation et les comparateurs mobilisés dans les essais cliniques TRAFFIC et TRANSPORT

Les traitements reçus par les patients français dans les essais cliniques TRAFFIC et TRANSPORT sont représentatifs de la prise en charge recommandée dans le PNDS et pratiquée en France. Cependant, par rapport à l’ensemble des patients inclus dans les essais

cliniques, on constate que les patients français reçoivent moins de bronchodilatateurs inhalés de courte durée d’action ou per os, de solution saline hypertonique, d’anti-inflammatoires mais plus d’acides ursodésoxycholiques et d’anti-acides. Ces différences étant relativement mineures, il est jugé acceptable que leur impact sur l’effet traitement de lumacaftor/ivacaftor soit négligeable et que celles-ci n’aient pas été prises en compte dans l’analyse.

Tableau 4. Fréquence des traitements reçus dans les essais TRAFFIC et TRANSPORT

<table>
<thead>
<tr>
<th></th>
<th>T&T BASELINE ensemble cohorte F508del homozygotes âge > 12 ans (N = 1108)</th>
<th>T&T BASELINE patients français F508del homozygotes âge > 12 ans (N = 76)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traitements inhalés</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotiques inhalés</td>
<td>64,5%</td>
<td>75%</td>
</tr>
<tr>
<td>Bronchodilatateurs inhalés</td>
<td>92,4%</td>
<td>76,3%</td>
</tr>
<tr>
<td>Bronchodilatateurs inhalés courte action</td>
<td>41,4%</td>
<td>19,7%</td>
</tr>
<tr>
<td>Bronchodilatateurs inhalés longue action</td>
<td>51%</td>
<td>56,6%</td>
</tr>
<tr>
<td>Corticoïdes inhalés</td>
<td>58,2%</td>
<td>48,7%</td>
</tr>
<tr>
<td>Solution saline hypertonique</td>
<td>58,1%</td>
<td>14,5%</td>
</tr>
<tr>
<td>Dornase alpha</td>
<td>76,1%</td>
<td>72,4%</td>
</tr>
<tr>
<td>Traitements per os</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchodilatateurs</td>
<td>92,8%</td>
<td>77,6%</td>
</tr>
<tr>
<td>AINS</td>
<td>30,5%</td>
<td>6,5%</td>
</tr>
<tr>
<td>Azithromycine</td>
<td>61,5%</td>
<td>59,2%</td>
</tr>
<tr>
<td>Corticoïdes oraux</td>
<td>30,9%</td>
<td>17,1%</td>
</tr>
<tr>
<td>Acide ursodésoxycolique</td>
<td>20,9%</td>
<td>34,2%</td>
</tr>
<tr>
<td>Anti-acides</td>
<td>60,7%</td>
<td>72,4%</td>
</tr>
<tr>
<td>Extraits pancréatiques</td>
<td>97,90%</td>
<td>98,7%</td>
</tr>
<tr>
<td>Vitamines liposolubles</td>
<td>95,7%</td>
<td>100%</td>
</tr>
<tr>
<td>Autre prise en charge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinésithérapie</td>
<td>NR</td>
<td>93%</td>
</tr>
</tbody>
</table>
4.2 La modélisation

4.2.1 La modélisation telle que présentée par les auteurs

► La population simulée

La population simulée correspond à la population d'indication de lumacaftor/ivacaftor®, à savoir les patients atteints de mucoviscidose, âgés de 12 ans et plus, et homozygotes pour la mutation F508del du gène CFTR. La population de patients à l'entrée du modèle est générée sur la base des caractéristiques des patients inclus dans les essais TRAFFIC et TRANSPORT, dans sa totalité et différenciée par groupes d'âge de 12 – 17 ans, 18 – 24 ans, 25 – 34 ans et >35 ans.

Une analyse en scénario a également été effectuée en générant une cohorte reproduisant les caractéristiques de la population suivie dans le registre français de la mucoviscidose en termes d'âge et de valeurs du VEMS (les données utilisées dans l'analyse sont présentées dans le Tableau 5). Les patients sont générés par tirage au sort en fonction de leur âge et de leur VEMS de sorte à reproduire la corrélation entre l'âge et le VEMS observée dans les essais TRAFFIC et TRANSPORT, et celle du registre français. Le genre des patients est déterminé par génération de nombres aléatoires selon une distribution uniforme, comparés à la proportion d'hommes dans la cohorte. Lorsque le nombre généré est inférieur à cette proportion, le patient généré est un homme. Les autres caractéristiques reprises des essais TRAFFIC et TRANSPORT dans l'analyse de référence sont égales aux valeurs moyennes de la cohorte pour tous les patients.

Tableau 5. Comparaison des caractéristiques des populations utilisées dans le modèle 4, issues du registre français 2013 32 et du CFFPR 1993 36

<table>
<thead>
<tr>
<th>Moyenne</th>
<th>Cohorte du modèle dans l’analyse de référence basée sur TRAFFIC/TRANSPORT F508del homozygotes âge > 12 ans (N = 1 108)</th>
<th>Cohorte du modèle reproduisant le registre 2013, utilisée dans l’analyse en scénario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Âge (Années)</td>
<td>25,53</td>
<td>23,04</td>
</tr>
<tr>
<td>VEMS (%)</td>
<td>60,59</td>
<td>71,85</td>
</tr>
<tr>
<td>Sexe (%)</td>
<td>49,4</td>
<td>45,0</td>
</tr>
<tr>
<td>Poids en z-score pour l’âge</td>
<td>-0,41</td>
<td>-0,4</td>
</tr>
<tr>
<td>IMC</td>
<td>21,17</td>
<td>21,18</td>
</tr>
<tr>
<td>Diabète (%)</td>
<td>Données par groupe d’âge issues du registre 2013*</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burkholderia cepacia (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fonction pancréatique exocrine suffisante (%)</td>
<td>0**</td>
<td>0</td>
</tr>
<tr>
<td>Fréquence annuelle des exacerbations pulmonaires (5 max)</td>
<td>0</td>
<td>0,83</td>
</tr>
</tbody>
</table>

* Les prévalences du diabète et des infections ne sont pas disponibles dans les essais TRAFFIC et TRANSPORT (pas de recueil de données post-traitement), les caractéristiques des patients au regard de ces paramètres en fonction de l’âge sont déterminées sur la base du registre français de la mucoviscidose. 5
** Il est supposé que l’ensemble des patients présente une insuffisance pancréatique sur la base des données de Ratjen et al. 6

La structure du modèle

Le modèle est une micro-simulation à temps discret sur données individuelles. Une cohorte de 1 000 patients est générée par tirage au sort avec remise au sein de la population issue des essais TRAFFIC et TRANSPORT (donc parmi un total de 1 108 patients). Le modèle simule l’évolution de cette cohorte 2 fois ; une première fois en recevant lumacaftor+ivacaftor+SoC et une seconde fois en recevant le SoC uniquement. Ce processus est répété 6 fois (c.à.d. que les cohortes sont clonées 6 fois).

Une fois l’ensemble des simulations effectuées, les données issues des 6 000 patients pour les 2 traitements sont compilées les unes à la suite des autres dans la partie résultats, de la façon suivante :

5 « Les prévalences des infections et du diabète au sein des patients inclus dans les essais TRAFFIC et TRANSPORT ont été obtenues pour comparaison avec le registre français :
- Proportion de sujets ayant eu une culture positive à S aureus meti S (au niveau respiratoire) dans les 2 ans précédant le screening : 42,5% (Orkambi®) et 6,9% (placebo) vs. 53% dans le registre chez les 10 ans et plus.
- Proportion de sujets ayant eu une culture positive à S aureus meti R (au niveau respiratoire) dans les 2 ans précédant le screening : 18,4% (Orkambi®) et 24,5% (placebo) vs. 9,2% dans le registre chez les 10 ans et plus.
- Proportion de sujets ayant eu une culture positive à Burkholderia Cepacia (au niveau respiratoire) dans les 2 ans précédant l’inclusion : 0,5% (Orkambi® et placebo) vs. 2,3% dans le registre chez les 10 ans et plus.
- Proportion de sujets ayant un diabète lié à la mucoviscidose : 30,9% (Orkambi®), 28,3% (placebo), conforme aux données du registre français si l’on tient compte de l’âge moyen de la population de Traffic et Transport (21,5% tout âge confondu)».

Les caractéristiques à l’entrée du modèle : âge, sexe, poids en z-score pour l’âge, suffisance pancréatique (oui/non), niveau de VEMS, nombre d’EP (supposé nul pour tous les patients), diabète (oui/non) et infections S aureus et B cepacia (oui/non) ;

- L’évolution du VEMS – variation entre l’entrée du modèle et le décès, et délai pour atteindre les seuils de 70%, 40% et 30% [si atteint] :
 - les résultats non actualisés et actualisés : nombre d’années en vie ;
 - le nombre de QALY ;
 - les événements : nombre d’EP, transplantation pulmonaire (oui/non), période avant la transplantation (si transplantation), nombre de cycles avec un diabète et avec une infection S aureus ou B cepacia.

- Coûts totaux: coûts de traitement (pour lumacaftor/ivacaftor), coûts des EP, coûts de prise en charge hospitalière, coûts de prise en charge ambulatoire (consultations et examens), coûts des autres prises en charge (c.à.d. coûts pharmaceutiques, des dispositifs médicaux et des transports associés au SoC), coûts des transplantations pulmonaires, coûts des EI, coûts des tests hépatiques, coûts de suivi ophtalmologique.

Finalement, pour chacune de ces variables, le modèle génère les statistiques suivantes sur base des 6 000 lignes pour les 2 bras de traitements: moyenne, écart type, somme, minimum et maximum. La moyenne est utilisée pour les résultats finaux et le calcul du RDCR.

Les cycles du modèle sont de 4 semaines les 2 premières années, puis d’une durée de 1 an jusqu’à la fin de l’horizon temporel.

La structure du modèle est présentée en Figure 2.

Figure 2. Structure du modèle

Source : Rapport technique fourni par l’industriel
Modèle de survie

Une fois la cohorte de patients générée, le modèle calcule la probabilité de décès en fonction de l’âge du patient à chaque cycle sur la base des données du registre français de la mucoviscidose. L’estimation de la survie moyenne des patients français atteints de mucoviscidose et homozygotes pour la mutation F508del a été réalisée à partir de données de survie de deux cohortes de naissance : 1992-1996 et 1997-2001, issues du registre français de la mucoviscidose. La fonction de Gompertz ajustée sur ces données permet d’établir les projections de survie les plus réalistes au regard de l’évolution de la maladie sur base de la formule suivante (Figure 3):

\[S_{\text{surv}}(t) = \exp\left((1-e^{Gt}) \times \left(\frac{L}{G} \right) \right) \]

où \(L = 0.00053 \) et \(G = 0.1709 \).

Figure 3. Projection de la survie des patients selon la fonction de survie retenue dans la simulation comparée à la survie dans la population générale française

Source : rapport technique fourni par l’industriel

Pour chaque patient et à chaque cycle de 4 semaines (sur un horizon temporel à vie entière, avec des cycles de 1 an à partir de la 3ème année), les caractéristiques du patient sont actualisées en fonction de l’effet traitement et de l’évolution naturelle de la maladie.

La probabilité de survie est ensuite ajustée via des rapports de risque instantanée (« Hazard ratio » HR) dérivés des équations de risques développées par Liou \textit{et al.}7 (2001) en prenant en compte les paramètres patients recalculés à chaque cycle (voir pour le détail des valeurs Tableau 6). En effet, en l’absence de données de morbi-mortalité issues d’essais cliniques, les auteurs du rapport ont recours à une équation de risque permettant d’estimer la survie des patients en fonction de leurs caractéristiques. Les paramètres pris en compte dans l’équation de risque sont explicités ci-dessous:

- Paramètres dépendants du traitement :

ORKAMBI® (lumacaftor / ivacaftor) – Avis d’efficience

- VEMS (en %)
- Nombre d’EP (0-5)
- Poids en z-score par âge

- Paramètres indépendants du traitement :
 - Age (en année)
 - Sexe (0 ou 1)
 - Présence d’un diabète (0 ou 1)
 - Fonction pancréatique exocrine suffisante (0 ou 1)
 - Infection par S. aureus (0 ou 1)
 - Infection par B. cepacia (0 ou 1)
 - Nombre d’EP × B. cepacia

La probabilité annuelle de décès est ensuite calculée à chaque cycle à partir de la probabilité de survie avec la formule :

\[p = 1 - e^{-h/t}, \]

où \(h \) est le risque de décès tenant compte du HR précédemment calculé et \(t \) est la durée du cycle en années.

Le statut « en vie »/« décédé » du patient est finalement déterminé à chaque cycle par la génération d’un nombre aléatoire au sein d’une distribution uniforme : le tirage d’un nombre supérieur à la probabilité de décès déterminée au cours des étapes précédentes correspondant à la survie du patient.

A noter que cette approche a également été utilisée pour définir la survenue des événements suivants ainsi que leur durée : arrêt du traitement, EP, diabète, S. Aureus, B. Cepacia, transplantation pulmonaire, effets indésirables.

Tableau 6. Paramètres associés aux caractéristiques individuelles prises en compte dans le modèle de Liou et al.

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Coefficient</th>
<th>Erreur type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (années)</td>
<td>0,011</td>
<td>0,0049</td>
</tr>
<tr>
<td>VEMS (%)</td>
<td>-0,042</td>
<td>0,0025</td>
</tr>
<tr>
<td>Sexe (% femme)</td>
<td>0,150</td>
<td>0,0740</td>
</tr>
<tr>
<td>Poids en z-score pour l’âge</td>
<td>-0,280</td>
<td>0,0410</td>
</tr>
<tr>
<td>Fonction pancréatique exocrine suffisante (%)</td>
<td>-0,140</td>
<td>0,2300</td>
</tr>
<tr>
<td>Diabète (%)</td>
<td>0,440</td>
<td>0,0980</td>
</tr>
<tr>
<td>Staphylococcus aureus (%)</td>
<td>-0,250</td>
<td>0,0900</td>
</tr>
<tr>
<td>Burkholderia cepacia (%)</td>
<td>1,410</td>
<td>0,1900</td>
</tr>
<tr>
<td>Fréquence annuelle des exacerbations pulmonaires</td>
<td>0,350</td>
<td>0,0240</td>
</tr>
<tr>
<td>Exacerbations + Burkholderia cepacia</td>
<td>-0,280</td>
<td>0,0600</td>
</tr>
</tbody>
</table>

Événements de la micro-simulation

A chaque cycle, la micro-simulation calcule pour les patients en vie le risque de survenue des événements suivants du modèle :

- La variation du VEMS
- Les exacerbations pulmonaires
- La variation du poids
- L’insuffisance pancréatique
- Le diabète
- Les infections (S. aureus et B. cepacia)
- L’arrêt des traitements
- Les événements indésirables
- Les transplantations pulmonaires et décès associés

Le Tableau 7 présente une synthèse de l’ensemble des paramètres utilisés.
Tableau 7. Synthèse des valeurs et sources utilisées pour évaluer la survenue des événements

<table>
<thead>
<tr>
<th>Événement</th>
<th>SoC seul</th>
<th>SoC + lumacaftor/ivacaftor</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolution du VEMS</td>
<td>S0-S24</td>
<td>0</td>
<td>+ 2.8 (0.7 par cycle de 4 semaines)</td>
</tr>
<tr>
<td>Post S24 (par an)</td>
<td>< 18 ans : -2.34</td>
<td></td>
<td>> S1 : -0.68</td>
</tr>
<tr>
<td></td>
<td>18-24 ans : -1.92</td>
<td></td>
<td>> S2 :</td>
</tr>
<tr>
<td></td>
<td>≥ 25 ans : -1.45</td>
<td></td>
<td>- < 18 ans : -1.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 18-24 ans : -0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- ≥ 25 ans : -0.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> S3 :</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- < 18 ans : -2.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 18-24 ans : -1.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- ≥ 25 ans : -1.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- SoC seul : Konstan et al 2007 et 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- SoC + lumacaftor/ivacaftor :</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> S1 : essais TRAFFIC et TRANSPORT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> S2 : Sawicki et al 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> S3 : Konstan et al 2007 et 2012</td>
</tr>
<tr>
<td>Fréquence des exacerbations pulmonaires</td>
<td>Horizon temporel entier</td>
<td>Equation de Whiting (fonction âge et VEMS)</td>
<td>Equation de Whiting (fonction âge et VEMS) x 0,442 (RR)</td>
</tr>
<tr>
<td></td>
<td>S0-S24</td>
<td>Inchangé</td>
<td>+ 0,068</td>
</tr>
<tr>
<td></td>
<td>Post S24</td>
<td>Inchangé</td>
<td>Inchangé</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hypothèse</td>
</tr>
<tr>
<td>Poids en z-score</td>
<td>Horizon temporel entier</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hypothèse</td>
</tr>
<tr>
<td>Insuffisance pancréatique</td>
<td>Etat initial</td>
<td>Prévalence en fonction de l’âge à l’entrée du modèle</td>
<td>Registre français de la mucoviscidose</td>
</tr>
<tr>
<td></td>
<td>Simulation</td>
<td>Evolution en fonction de l’incidence par classe d’âge</td>
<td>Registre français de la mucoviscidose</td>
</tr>
<tr>
<td>Diabète</td>
<td>Etat initial</td>
<td>Prévalence en fonction de l’âge à l’entrée du modèle puis inchangé au cours de la simulation</td>
<td>Registre français de la mucoviscidose</td>
</tr>
<tr>
<td></td>
<td>Simulation</td>
<td>Inchangé, avec une durée maximale de 100 ans</td>
<td>Registre français de la mucoviscidose</td>
</tr>
<tr>
<td>Arrêt de traitement</td>
<td>S0-S24</td>
<td>Non applicable (le patient reste sous SoC jusqu’au décès)</td>
<td>6.8% à 24 semaines (1.083% par cycle. Le patient continue à recevoir le SoC jusqu’au décès)</td>
</tr>
<tr>
<td></td>
<td>Post S24</td>
<td>NA</td>
<td>0%</td>
</tr>
<tr>
<td>Evénements indésirables</td>
<td>> Dyspnée</td>
<td>> 16,1% par an</td>
<td>> 27.9% par an</td>
</tr>
<tr>
<td></td>
<td>> Diarrhée</td>
<td>> 17,3% par an</td>
<td>> 22,3% par an</td>
</tr>
<tr>
<td></td>
<td>> Nausées</td>
<td>> 15,7% par an</td>
<td>> 20,8% par an</td>
</tr>
<tr>
<td></td>
<td>> Resp. anorm.</td>
<td>> 12,3% par an</td>
<td>> 20,0% par an</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hypothèse</td>
</tr>
<tr>
<td>Transplantations pulmonaires</td>
<td>VEMS < 30%</td>
<td>19,5% des patients</td>
<td>Registre français de la mucoviscidose</td>
</tr>
<tr>
<td>Décès associés aux transplantations pulmonaires</td>
<td>A 1 an</td>
<td>21,1% par an</td>
<td>Registre français de la mucoviscidose</td>
</tr>
<tr>
<td></td>
<td>Entre 2 et 5 ans</td>
<td>7,37% par an</td>
<td>Registre français de la mucoviscidose</td>
</tr>
</tbody>
</table>
Variation du VEMS

Le VEMS (en anglais ppFEV₁, percent-predicted forced expiratory volume in 1 second) exprimé en pourcentage de la capacité vitale permet d’évaluer le degré d’obstruction bronchique dans le cadre de maladies respiratoires. La valeur moyenne du VEMS chez les individus sains est estimée aux alentours de 80%. La diminution du VEMS reflète le déclin de la fonction respiratoire et donc la sévérité de l’obstruction bronchique.

La progression du VEMS dans le modèle est simulée en 2 étapes : avant et après 24 semaines :

- Dynamique d’évolution jusqu’à la 24ème semaine : les deux essais de phase III TRAFFIC et TRANSPORT ont permis de mesurer l’évolution du VEMS chez les patients traités par SoC seul et les patients traités par SoC + lumacaftor/ivacaftor.
 - Patients traités par SoC seul : dans la simulation, le VEMS est supposé stable tout au long des 24 premières semaines pour les patients traités par SoC seul + Placebo (c.à.d. 0% entre les semaines 1 et 24).
 - Patients traités par SoC + lumacaftor/ivacaftor : le VEMS augmente de manière constante au cours des 16 premières semaines (c.à.d. 0,7% toutes les 4 semaines, soit 2,8% après 16 semaines) puis se stabilise jusqu’à la 24ème semaine (c.à.d. 0% entre les semaines 16 et 24). Ce facteur reflète la variation moyenne du VEMS calculée entre la semaine 16 et la semaine 24 par rapport à la baseline. Il est issu des données poolées des essais TRAFFIC et TRANSPORT.

- Dynamique de diminution du VEMS après la 24ème semaine :
 - Patients traités par SoC seul : les deux études de Konstan et al. publiées en 2007 et en 2012 ont permis d’estimer la cinétique de diminution du VEMS après 24 semaines chez les patients traités par SoC + placebo par groupe d’âge. Les coefficients de diminution présentés dans le Tableau 8 ci-dessous ont été établis à partir de cette étude observationnelle réalisée sur une population américaine et canadienne de 4 161 adultes et 1 359 enfants atteints de mucoviscidose tout génotype confondu. En moyenne, les patients ont été suivis pendant 4,6 ans, le nombre médian de mesure de spirométrie par patient était de 8.

Tableau 8. Evolution du VEMS chez les patients traités par SoC seul après 24 semaines

<table>
<thead>
<tr>
<th>Age</th>
<th>Evolution annuelle du VEMS</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 – 17 ans</td>
<td>-2,34</td>
<td>Konstan et al. 2007 et 2012</td>
</tr>
<tr>
<td>18 – 24 ans</td>
<td>-1,92</td>
<td></td>
</tr>
<tr>
<td>+ de 25 ans</td>
<td>-1,45</td>
<td></td>
</tr>
</tbody>
</table>

- Patients traités par SoC + lumacaftor/ivacaftor : la cinétique de diminution du VEMS après 24 semaines a fait l’objet de 3 scénarios, à la demande de la HAS lors de l’échange technique :
 - Scénario 1 : La cinétique de diminution du VEMS est estimée à partir des données cliniques des essais TRAFFIC et TRANSPORT et de l’étude d’extension

PROGRESS. La pente du VEMS a été estimée entre la 4^{ème} semaine et la 48^{ème} semaine grâce à un modèle mixte à ordonnées à l’origine et pentes individuelles aléatoires : la diminution est estimée à -0,68 points. Ce coefficient est appliqué sur l’ensemble de l’horizon temporel à partir de la 24^{ème} semaine.

- **Scénario 2** : Le VEMS reste stable entre la 24^{ème} et la 48^{ème} semaine, puis diminue à un taux réduit de 53% par rapport à celui du SoC. Ce facteur provient de l’étude de Sawicki et al.10 Cette étude a comparé l’évolution du VEMS des patients atteints de mucoviscidose, porteurs des mutations autres que F508del et traités par ivacaftor seul (Kalydeco®) sur la base de données d’essais cliniques de phase III de Kalydeco® et de l’étude d’extension qui a suivi, avec l’évolution du VEMS chez les patients homozygotes F508del ne bénéficiant pas de traitement actif sur la base des données du registre CFFPR (USA). L’étude a montré que la cinétique de dégradation du VEMS était moins importante chez les patients recevant le traitement actif que chez les patients ne recevant pas de traitement étiologique.

- **Scénario 3** : Dans cette dernière analyse, il est fait l’hypothèse que la cinétique de diminution du VEMS des patients sous SoC+lumacaftor/ivacaftor est équivalente à celle des patients traités par SoC + Placebo.

Les dynamiques de dégradation du VEMS pour chaque scénario sont résumées dans le Tableau 9 ci-dessous.

Tableau 9. Evolution du VEMS chez les patients traités par sous SoC + lumacaftor/ivacaftor après 24 semaines

<table>
<thead>
<tr>
<th>Groupe d’âge</th>
<th>Evolution annuelle du VEMS sous SoC + lumacaftor/ivacaftor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scénario 1</td>
</tr>
<tr>
<td></td>
<td>Valeur</td>
</tr>
<tr>
<td>18 – 24 ans</td>
<td>-0,68</td>
</tr>
<tr>
<td>+ de 25 ans</td>
<td>-0,68</td>
</tr>
</tbody>
</table>

* NB : Une erreur matérielle a été constatée dans le scénario 3 : un coefficient constant de -0,82 (c.a.d. -0,68×1,20) quel que soit l’âge a été intégré au lieu des paramètres demandés lors de l’échange technique. L’erreur a été corrigée dans la suite des résultats présentés pour ce scénario.

Finalement, un seuil minimum de 15% du VEMS a été mis en place dans le modèle afin d’éviter des valeurs extrêmes et irréalistes. La valeur de 15% a été définie sur avis d’experts de la pathologie.

Les exacerbations pulmonaires (EP)

Une EP est un épisode aigu d’aggravation clinique qui se caractérise notamment et le plus souvent par : une aggravation des symptômes respiratoires, une baisse de la fonction respiratoire (> 10% de la valeur du VEMS), une altération de l’état général. Les EP contribuent à la dégradation progressive et irréversible de la fonction pulmonaire et sont associées à un risque plus important de mortalité ou de transplantation pulmonaire. Le nombre d’EP expérimenté par le patient à chaque cycle est modélisé de la façon suivante :

\[
\begin{align*}
\text{Taux annuel d’EP} & \geq 18 \text{ years} = 3.7885e^{-0.026\times\text{VEMS}} \\
\text{Taux annuel d’EP} & < 18 \text{ years} = 8.5938e^{-0.035\times\text{VEMS}}
\end{align*}
\]

Patients traités par SoC + lumacaftor/ivacaftor : la même méthodologie est utilisée pour les patients recevant le traitement par lumacaftor/ivacaftor mais les auteurs appliquent en plus un facteur de 0.442. Ce coefficient correspond au risque relatif de survenue d’EP sous lumacaftor/ivacaftor afin de tenir compte de l’effet traitement du produit. Les auteurs justifient cette approche sur la base d’avis d’experts cliniciens et en économie de la santé qui considèrent que la fréquence de survenue des EP n’est que partiellement dépendante du VEMS et, de ce fait, un paramètre supplémentaire (RR = 0.442) vient pondérer l’équation de Whiting afin de représenter l’effet propre de lumacaftor/ivacaftor sur la fréquence de survenue des EP, indépendamment du VEMS.

Ce RR de 0.442 est le résultat du rapport de la fréquence des EP requérant une hospitalisation et/ou une antibiothérapie IV chez les patients traités par SoC + lumacaftor/ivacaftor sur celle des patients traités par SoC seul, établi à partir des essais cliniques.

Tableau 10. Fréquence annuelle des EP nécessitant une hospitalisation ou une antibiothérapie IV sous SoC seul et sous SoC + lumacaftor/ivacaftor

<table>
<thead>
<tr>
<th>Fréquence annuelle des EP nécessitant une hospitalisation ou une antibiothérapie IV</th>
<th>SoC seul</th>
<th>Soc + luma/iva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation de Whiting (fonction du VEMS et de l’âge)</td>
<td>Equation de Whiting (fonction du VEMS et de l’âge) x 0.442</td>
<td></td>
</tr>
</tbody>
</table>

La variation du poids

Pour les patients traités par SoC seul, le poids est supposé inchangé pendant toute la durée de la simulation. Pour les patients traités par SoC + lumacaftor/ivacaftor, une augmentation absolue de 0.068 du poids est appliquée au cours de 24 premières semaines, sur la base des données constatées dans les essais cliniques TRAFFIC et TRANSPORT. Après la 24ème semaine, le poids en z-score est supposé inchangé.

Tableau 11. Evolution du poids en z-score sous SoC seul et sous SoC + lumacaftor/ivacaftor

<table>
<thead>
<tr>
<th>Poids en z-score</th>
<th>SoC seul</th>
<th>Soc + luma/iva</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 premières semaines</td>
<td>Inchangé</td>
<td>Baseline +0,068</td>
</tr>
<tr>
<td>Post 24ème semaine</td>
<td>Inchangé</td>
<td>Inchangé</td>
</tr>
</tbody>
</table>

Le diabète

Les données liées à la présence d’un diabète ou au développement de cette pathologie chez les patients simulés ne sont pas issues des données des essais cliniques mais reposent sur des données épidémiologiques du registre français de la mucoviscidose détaillant la prévalence et l’incidence annuelle du diabète par classe d’âge chez les patients homozygotes pour la mutation F508del. Le statut diabétique du patient est totalement indépendant du traitement reçu par le patient.

Tableau 12. Prévalence et incidence du diabète chez les patients du modèle

<table>
<thead>
<tr>
<th>Tranche d’âge</th>
<th>Prévalence</th>
<th>Incidence annuelle</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-14 ans</td>
<td>6,3%</td>
<td>2,5%</td>
<td>Registre français de la mucoviscidose, patients homozygotes F508del</td>
</tr>
<tr>
<td>15-19 ans</td>
<td>18,8%</td>
<td>5,1%</td>
<td></td>
</tr>
<tr>
<td>20-24 ans</td>
<td>28,2%</td>
<td>2,6%</td>
<td></td>
</tr>
<tr>
<td>25-29 ans</td>
<td>35,4%</td>
<td>3,2%</td>
<td></td>
</tr>
<tr>
<td>30-34 ans</td>
<td>44,0%</td>
<td>3,3%</td>
<td></td>
</tr>
<tr>
<td>35-39 ans</td>
<td>50,0%</td>
<td>3,8%</td>
<td></td>
</tr>
<tr>
<td>40-100 ans</td>
<td>62,6%</td>
<td>4,1%</td>
<td></td>
</tr>
</tbody>
</table>

Insuffisance pancréatique

Les auteurs considèrent que l’ensemble des patients simulés dans le modèle présente une insuffisance pancréatique exocrine. Des données de la littérature (Ratjen et al) et issues du registre français de la mucoviscidose viennent corroborer cette hypothèse.

Les infections (S. aureus et B. cepacia)

La prévalence des infections à S. aureus et B. cepacia chez les patients simulés est issue de données épidémiologiques du registre français de la mucoviscidose chez les patients homozygotes F508del. Les auteurs font l’hypothèse que le statut infectieux des patients au regard de ces deux bactéries n’évolue pas au cours de la simulation, et ce quel que soit le traitement (incidence nulle).

Tableau 13. Prévalence de S. aureus et B. cepacia chez les patients du modèle

<table>
<thead>
<tr>
<th>Tranche d’âge</th>
<th>Prévalence S. aureus</th>
<th>Prévalence B. cepacia</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-14 ans</td>
<td>86,6%</td>
<td>1,5%</td>
<td>Registre français de la mucoviscidose, patients homozygotes F508del</td>
</tr>
<tr>
<td>15-19 ans</td>
<td>80,1%</td>
<td>3,1%</td>
<td></td>
</tr>
<tr>
<td>20-24 ans</td>
<td>66,6%</td>
<td>3,1%</td>
<td></td>
</tr>
<tr>
<td>25-29 ans</td>
<td>56,4%</td>
<td>3,2%</td>
<td></td>
</tr>
<tr>
<td>30-34 ans</td>
<td>44,0%</td>
<td>1,7%</td>
<td></td>
</tr>
<tr>
<td>35-39 ans</td>
<td>32,6%</td>
<td>3,8%</td>
<td></td>
</tr>
<tr>
<td>40-100 ans</td>
<td>33,3%</td>
<td>0,0%</td>
<td></td>
</tr>
</tbody>
</table>

L’arrêt du traitement lumacaftor/ivacaftor

Un taux annuel d’interruption de traitement de 14,2% (taux de 1,083% par cycle) est appliqué dans le modèle chez les patients traités par SoC + lumacaftor/ivacaftor, et ce jusqu’à la 24ème semaine de traitement. Ce taux est issu des essais cliniques TRAFFIC et TRANSPORT. Après la 24ème semaine, il est supposé qu’aucun patient n’interrompt son traitement pendant tout l’horizon temporel, à l’exception des patients recevant une greffe pulmonaire. Cette hypothèse est testée en analyse de sensibilité avec des taux d’arrêt de traitement annuel de 1.9% et 4.2%.

Pour les patients ayant interrompu leur traitement au cours des 24 premières semaines, les auteurs font l’hypothèse que le VEMS des patients augmente de la même manière que les patients n’ayant pas interrompu leur traitement jusqu’à la semaine 24. Après 24 semaines, leur VEMS connaît une décroissance identique à celle des patients traités par SoC seul. L’effet du traitement sur les exacerbations pulmonaires est interrompu dès l’arrêt du traitement.

Les événements indésirables
Les effets indésirables (EI) modélisés sont les EI de tous grades de sévérité, survenus chez plus de 5% des patients du bras SoC + lumacaftor/ivacaftor et pour lesquels il existe une différence d’au moins 1% entre le bras SoC seul et le bras SoC + lumacaftor/ivacaftor dans les essais cliniques TRAFFIC et TRANSPORT.

Tableau 14. Fréquence des EI modélisés dans les bras lumacaftor/ivacaftor et placebo des essais TRAFFIC et TRANSPORT (source : rapport technique)

<table>
<thead>
<tr>
<th>Effet Indésirable (Source : essais TRAFFIC et TRANSPORT)</th>
<th>SoC seul</th>
<th>SoC + lumacaftor/ivacaftor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspnée</td>
<td>16.1%</td>
<td>27.9%</td>
</tr>
<tr>
<td>Diarrhée</td>
<td>17.3%</td>
<td>22.3%</td>
</tr>
<tr>
<td>Nausées</td>
<td>15.7%</td>
<td>20.8%</td>
</tr>
<tr>
<td>Respiration anormale</td>
<td>12.3%</td>
<td>20.0%</td>
</tr>
</tbody>
</table>

Les transplantations pulmonaires
Dans le modèle, le critère d’éligibilité des patients à la greffe pulmonaire correspond à un taux de VEMS < 30%. D’après les données du registre français de la mucoviscidose, 19,5% des patients homozygotes F508del ont reçu une transplantation pulmonaire. Ce taux est appliqué dans le modèle et testé en analyse de sensibilité.

La survie post-transplantation est estimée à partir des données du registre français de la mucoviscidose :
- Taux de décès à 1 an : 21,1%
- Taux de décès annuel entre 2 et 5 ans : 7,37%

Principales hypothèses simplificatrices
Indépendance des effets du traitement sur le VEMS et les EP
Dans le modèle, la fréquence des EP est déterminée par une équation dérivée de Whiting et al. (2014) en fonction du VEMS et l’âge du patient. Cependant, un panel d’experts en économie de la santé impliqués dans le développement du modèle a considéré que l’effet traitement de lumacaftor/ivacaftor sur les EP et le VEMS était partiellement indépendant. Une analyse poolée effectuée par l’industriel d’après les données de TRAFFIC et TRANSPORT montre que lumacaftor/ivacaftor a un impact sur la fréquence des EP requérant une antibiothérapie IV et/ou une hospitalisation, et ce même chez les patients pour lesquels une diminution significative du VEMS n’a pas été observée par rapport au bras SoC seul. Pour prendre en compte cet effet additionnel du traitement sur les EP tel que décrit par l’industriel, le modèle considère un risque relatif (RR) diminuant la survenue d’EP chez les patients traités par SoC+lumacaftor/ivacaftor. Le RR est dérivé des données observées dans les essais TRAFFIC et TRANSPORT et fixé à 0.442 dans le modèle (c.à.d. une fréquence des EP plus de 2 fois inférieure chez les patients traités par SoC+lumacaftor/ivacaftor par rapport au SoC seul). Le RR de 0.442 a été calculé comme le rapport des fréquences d’EP requérant une hospitalisation et/ou une antibiothérapie IV entre les patients traités par SoC+lumacaftor/ivacaftor par rapport à ceux traités par SoC seul.

Observance
Un taux d’observance de 81% associé au coût d’acquisition de lumacaftor/ivacaftor est appliqué dans l’analyse de référence, sur la base des données constatées dans le cadre des études de suivi du produit Kalydeco® (ivacaftor, traitement de la mucoviscidose chez des patients atteints de mutations différentes de la F508del).
4.2.2 Analyse critique de la modélisation

► La population simulée

La population simulée correspond à la population de patients des essais TRAFFIC et TRANSPORT. La population semble dans l'ensemble représentative de la population du registre française pour les patients homozygotes pour la mutation F508del du gène CFTR.12 Les patients français de l'étude TRAFFIC/TRANSPORT (N=72) ont des caractéristiques similaires à celles de la population globale de l'étude (N=1 108). Le Tableau 15 présente les caractéristiques de l'ensemble des patients atteints de mucoviscidose homozygotes pour la mutation F508del du gène CFTR des essais TRAFFIC et TRANSPORT utilisées dans le modèle (>12 ans), celles uniquement des patients français des essais TRAFFIC et TRANSPORT, ainsi que celles de la population homozygote F508del du registre français de la mucoviscidose.

Le registre ne permettant pas de sélectionner uniquement les patients âgés de 12 et plus, l'âge moyen dans le registre est de 18,8 ans tout âge confondu, versus 25,5 ans dans le modèle n'incluant que les patients de plus de 12 ans. Ceci se reflète par un niveau moyen de VEMS inférieur (c.à.d. les patients sont en moins bon état de santé) dans le modèle par rapport au registre français (VEMS de 60,6% versus 77,3%, respectivement). Le registre ne fournit pas la distribution des patients en fonction de leur âge et de leur niveau de VEMS. Il reste donc une incertitude sur un éventuel biais d’hétérogénéité entre les patients du modèle et les patients français, en sachant cependant qu’un éventuel VEMS plus faible dans le modèle serait à priori en défaveur du produit évalué par l’industriel.

Tableau 15. Comparaison des caractéristiques des populations utilisées dans le modèle4, et celles issues du registre français 201312

<table>
<thead>
<tr>
<th>Moyenne</th>
<th>Modèle (TRAFFIC/TRANSPORT) F508del homozygotes âge > 12 ans (N = 1 108)</th>
<th>TRAFFIC/TRANSPORT (Patients français) : F508del homozygotes âge > 12 ans (N = 76)</th>
<th>Registre français 2013 F508del homozygotes, tout âge confondu (N=2 660)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Années)</td>
<td>25,53</td>
<td>21,9</td>
<td>18,8</td>
</tr>
<tr>
<td>VEMS (%)</td>
<td>60,59</td>
<td>58,35</td>
<td>77,3</td>
</tr>
<tr>
<td>Sexe (%)</td>
<td>49,4</td>
<td>55,3</td>
<td>47,0</td>
</tr>
<tr>
<td>Poids en z-score pour l'âge</td>
<td>-0,41</td>
<td>NR</td>
<td>-0,4</td>
</tr>
<tr>
<td>IMC</td>
<td>21,17</td>
<td>19,97</td>
<td>NR</td>
</tr>
<tr>
<td>Diabète (%)</td>
<td>Données par groupe d'âge issues du registre 2013</td>
<td>21,5</td>
<td>56,6</td>
</tr>
<tr>
<td>Staphylococcus aureus (%)</td>
<td></td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>Burkholderia cepacia (%)</td>
<td></td>
<td>0,72</td>
<td></td>
</tr>
<tr>
<td>Fonction pancréatique exocrine suffisante (%)</td>
<td>0</td>
<td>NR</td>
<td>1,6</td>
</tr>
<tr>
<td>Fréquence annuelle des exacerbations pulmonaires (5 max)</td>
<td>0</td>
<td>NR</td>
<td>0,72</td>
</tr>
</tbody>
</table>

La structure du modèle

Le modèle est en adéquation avec les précédents modèles d'efficience publiés dans la mucoviscidose, et plus particulièrement, la structure du modèle est similaire à celle du modèle publié par Whitting et al.13 dans le cadre de l’analyse de l’efficience d’ivacaftor (Kalydeco®) effectuée pour le NICE. Le modèle développé semble capturer les principaux aspects de la pathologie, à savoir l’évolution du VEMS, le risque de mortalité sur la base des facteurs principaux, la survenue d’EP, du diabète, d’infections, d’événements indésirables, et les transplantations pulmonaires.

Chaque individu, parmi les 6 000 générés aléatoirement dans la micro-simulation a un poids identique dans le calcul des résultats moyens, et ce quel que soit son âge à l’entrée du modèle. Cette approche est correcte et représentative de la réalité, cependant elle ne permet pas de différencier les profils de patient en fonction de l’âge. Sur demande de la HAS lors de l’échange technique, l’industriel a développé des analyses supplémentaires afin d’obtenir une vision plus fine de l’évolution de la pathologie en fonction de l’âge à l’entrée du modèle.

Modèle de survie

Le modèle de survie semble bien implémenté et suit une méthodologie qui peut être considérée comme acceptable compte tenu de l’absence de données de morbi-mortalité issues d’essais cliniques, nécessitant le recours à une équation de risque. Cependant, il peut être noté que les coefficients du modèle de survie sont issus d’une étude américaine réalisée sur l’ensemble des patients atteints de mucoviscidose, toute mutation condonue (Liou et al.), pouvant entraîner un biais éventuel qui doit être gardé à l’esprit lors de l’interprétation des résultats.

Il peut aussi être noté qu’une autre méthodologie permettant d’estimer la survie à partir d’une équation de survie segmentée en fonction de l’âge, en utilisant un seuil de 35 ans au-delà duquel la fonction de survie n’est plus basée sur la courbe de Gompertz mais sur la formule suivante (Figure 4) :

- Taux de survie (t) = Taux de survie (t-1) × (1 – 0.0709).

Une telle analyse prend en compte un effet seuil de la survie chez les patients les moins sévères au-delà d’un certain âge (c.à.d. les patients de plus de 35 ans toujours en vie sont dans l’ensemble les patients avec le niveau le moins sévère de la pathologie), cependant cette analyse n’a pas été effectuée par l’industriel.

Événements de la micro-simulation

Pour les paramètres de la micro-simulation dont les données proviennent des essais cliniques TRAFFIC et TRANSPORT, les résultats de l’analyse groupée des données de ces deux essais ont été utilisées ce qui peut potentiellement surestimer les valeurs des paramètres.

Variation du VEMS

La méthodologie utilisée par les auteurs afin de calculer l’évolution du VEMS sous lumacaftor/ivacaftor au cours des 24 premières semaines est critiquable. En effet, cette augmentation absolue du VEMS par rapport à la baseline est calculée en prenant en compte la moyenne des valeurs de VEMS observées à 16 et 24 semaines et non pas sur la base de la mesure du VEMS à la 24ème semaine uniquement. Cela peut conduire les auteurs à surestimer le coefficient d’augmentation du VEMS au cours des 24 premières semaines étant donné que la valeur du VEMS à 24 semaines est inférieure à celle constatée à 16 semaines. Par ailleurs, les données observées du VEMS à 4, 8, 16, 20 et 24 semaines étant disponibles, les auteurs auraient pu utiliser ces données spécifiques à chaque cycle du modèle, d’autant plus que les cycles ont une durée de 4 semaines.

L’étude de Konstan et al. utilisée par les auteurs pour déterminer la cinétique de diminution du VEMS chez les patients traités par SoC seul est acceptable bien qu’elle repose sur des données issues de l’ensemble de la population de patients atteints de mucoviscidose et non pas uniquement sur des données issues de la sous population présentant la mutation F508del.

Chez les patients traités par SoC+lumacaftor/ivacaftor, la cinétique de diminution du VEMS est estimée entre la 4ème et la 48ème semaine, alors qu’une augmentation du VEMS est en-
core constatée à la 8ème semaine, ceci pouvant conduire à sous-estimer le coefficient de diminution du VEMS.

De plus, l’industriel a fait l’hypothèse d’une l’évolution du VEMS similaire pour l’ensemble des patients âgés de plus de 35 ans. La relation entre l’âge et la vitesse de diminution du VEMS est difficile à estimer et peut d’autant plus varier entre les individus après l’âge de 30 ans. La Figure 6 présente le VEMS moyen par groupe d’âge chez les patients homozygotes F508del à partir des données du registre français, comparées à celles du modèle de l’industriel issues des essais TRAFFIC et TRANSPORT. Les deux jeux de données montrent un ralentissement de la diminution du VEMS à partir de 20-24 ans, voir un plateau à partir 25 ans et finalement une hausse après 40 ans (les patients encore en vie après 40 ans sont les moins sévères avec une fonction pulmonaire moins diminuée, phénomène s’amplifiant dans le temps et aboutissant notamment à la remontée constatée du VEMS des patients les plus âgés ; voir pyramide des âges à la Figure 5). Les données estimées par Liou et al. 2010 sur base de données longitudinales sur 20 664 patients atteints de mucoviscidose en Amérique du Nord confirment cette tendance (Figure 7). La Figure 6 permet de confirmer que les patients des essais TRAFFIC et TRANSPORT ont globalement un VEMS plus faible que dans la population française dont les données datent de 2013 (données à priori défavorables au produit).

Finalement, étant donné l’importance attendue de la variation du VEMS sur l’évolution de la pathologie, la HAS s’est étonnée de l’absence de différenciation nette des résultats en fonction des 3 scénarios. L’industriel ne pouvant justifier de cette absence d’impact des variations du VEMS sur les résultats, la HAS a vérifié les paramètres introduits dans le modèle Excel fournis par l’industriel pour le scénario 3. Il s’avère que le scénario 3 du modèle ne reflète pas celui décrit par l’industriel dans son rapport mis à jour suite à la demande de la HAS. En effet, il avait été demandé à l’industriel d’utiliser une cinétique de diminution du VEMS pour SoC+lumacaftor/ivacaftor équivalente à celle des patients traités par SoC seul, c’est-à-dire une diminution du VEMS de -2,34 pour les patients de moins de 18 ans, de -1,92 pour les patients de 18 à 24 ans et de -1,45 pour les patients de plus de 25 ans. Or il s’avère que les valeurs intégrées par l’industriel sont bien plus faibles : -0,82 quel que soit l’âge des patients, ce qui est en faveur du produit pour le scénario 3 (voir Tableau 16).

Tableau 16. Comparaison des valeurs d’évolution du VEMS en fonction de l’âge utilisées par l’industriel vs valeurs demandées par la HAS

<table>
<thead>
<tr>
<th>Groupe d’âge</th>
<th>Evolution annuelle du VEMS sous SoC + lumacaftor/ivacaftor</th>
<th>Scénario 3 (tel que demandé par la HAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scénario 3 (basé sur le modèle Excel fourni par l’industriel utilisé pour produire les résultats présentés dans le rapport technique)</td>
<td>Scénario 3 (tel que demandé par la HAS)</td>
</tr>
<tr>
<td></td>
<td>Valeur</td>
<td>Source</td>
</tr>
<tr>
<td>0 – 17 ans</td>
<td>-0.68</td>
<td>Hypothèse de l’industriel : 20% plus bas que la valeur rapportée dans les essais TRAFFIC et TRASNPORT ((-0.68 \times 1.20 = -0.82))</td>
</tr>
<tr>
<td>18 – 24 ans</td>
<td>-0.68</td>
<td>TRAFFIC et TRASNPORT</td>
</tr>
<tr>
<td>+ de 25 ans</td>
<td>-0.68</td>
<td>TRAFFIC et TRASNPORT</td>
</tr>
</tbody>
</table>

Figure 5. Pyramide des âges suivis dans le registre français de la mucoviscidose
Figure 6. VEMS moyen par groupe d’âge chez les patients homozygotes F508del issu des essais TRAFFIC et TRANSPORT, et du registre français de la mucoviscidose

![VEMS moyen par groupe d’âge chez les patients homozygotes F508del](image)

Sur la figure, il a été fait l’hypothèse d’un VEMS identique entre les données du modèle et celles du registre chez les moins de 10 ans (c.à.d. 99%).

Figure 7. Evolution du VEMS en fonction de l’âge dans la cohorte CFFR, d’après Liou et al. 2010

![Evolution du VEMS en fonction de l’âge](image)

Les exacerbations pulmonaires (EP)

Concernant les exacerbations pulmonaires, l’étude de Goss qui a permis d’établir l’équation de Whiting repose sur des données de la population américaine recueillies chez l’ensemble de la population de patients atteints de mucoviscidose et pas seulement chez les patients porteurs de la mutation F508del. De plus cette étude ne permet pas d’étudier l’ensemble des exacerbations pulmonaires, ce qui représente un biais de l’évaluation médico-économique qui ne repose que sur les exacerbations pulmonaires ayant nécessité une hospitalisation ou une antibiothérapie par intraveineuse.
La variation du poids

L’hypothèse d’un poids en z-score stable pendant toute la durée de l’horizon temporel chez les patients traités par SoC seul est non justifiée par les auteurs. Tout comme l’hypothèse d’un maintien permanent et constant du bénéfice initial de lumacaftor/ivacaftor sur le poids. Aucune publication ou donnée clinique ne vient corroborer cette hypothèse. Une analyse de sensibilité sur ce paramètre aurait pu être effectuée par les auteurs, ce qui n’est pas le cas.

Le diabète

Concernant les données utilisées par les auteurs sur le diabète, celles-ci sont jugées conformes et adéquates à la population modélisée. La différenciation de la prévalence et de l’incidence par tranche d’âge, issue du registre français de la mucoviscidose est représentative de la population d’intérêt.

Insuffisance pancréatique

L’hypothèse faite par les auteurs et considérant que l’ensemble des patients du modèle présente une insuffisance pancréatique est jugé acceptable bien que ce taux soit légèrement inférieur dans les essais cliniques.

Les infections (S. aureus et B. cepacia)

Le statut infectieux des patients est considéré identique quel que soit le traitement reçu par les patients du modèle, il est par ailleurs considéré comme inchangé tout au long de la simulation. Les auteurs font l’hypothèse que l’incidence des infections par S.aureus et B.cepacia est nulle mais ne justifient pas cette hypothèse.

L’arrêt des traitements

L’absence d’arrêt de traitement après 24 semaines en analyse de référence et un taux d’arrêt de traitement de 1,9% testé en analyse de sensibilité ne reposent sur aucune justification de la part des auteurs. Le taux de 4,2% correspond quant à lui au taux d’arrêt de traitement pour évènements indésirables. L’hypothèse d’une absence d’arrêt de traitement après 24 semaines est peu réaliste, plusieurs raisons pouvant conduire à des arrêts de traitements : évènements indésirables (d’autant que le RCP précise que le traitement doit être arrêté en présence d’anomalies du bilan hépatique), aggravation de l’état du patient, choix personnel du patient, etc. Cette hypothèse n’est pas acceptable. Le fait d’avoir considéré que le VEMS des patients ayant interrompu leur traitement augmente de la même manière que les patients ayant poursuivi leur traitement est jugée acceptable étant donnée l’utilisation de données cliniques en ITT.

Les événements indésirables

La façon dont les évènements indésirables a été modalisée à court terme n’appelle pas de remarque particulière, et ce d’autant plus que le profil de tolérance de lumacaftor/ivacaftor dans les essais cliniques semble favorable par rapport au SoC seul. Il est en néanmoins difficile de clairement distinguer l’impact des effets indésirables lié au seul traitement actif par lumacaftor/ivacaftor par rapport aux traitements inclus dans le SoC (p.ex. antibiotiques, corticostéroïdes, bronchodilatateurs). Il faut en plus préciser qu’il n’y a pas de données disponibles sur les évènements indésirables potentiels à long terme du produit évalué. Le modèle permet d’appliquer des désutilités associées aux effets indésirables en fonction de leur durée (jusqu’à 6 effets indésirables). Il est ainsi regrettable que l’industriel n’ait pas testé l’impact éventuel de ces paramètres sur les résultats en analyse de sensibilité.
Les transplantations pulmonaires

La probabilité de recevoir une transplantation pulmonaire est identique chez tous les patients éligibles au regard de leur fonction pulmonaire, quel que soit leur traitement. Si le VEMS est un des critères d’éligibilité à la transplantation, il n’est néanmoins pas le seul. Cependant cette hypothèse simplificatrice du modèle est acceptable. Le fait d’avoir tenu compte d’un taux de décès propre à la transplantation pulmonaire et différencié est fonction du délai post transplantation est approprié.

Principales hypothèses simplificatrices

Indépendance des effets du traitement sur le VEMS et les EP

L’hypothèse d’indépendance des effets du traitement sur le VEMS et les EP est une hypothèse forte et qui apparaît discutable. Au-delà des avis d’experts, il peut être argumenté que la méthodologie adoptée par les auteurs pour modéliser l’effet de lumacaftor/ivacaftor sur la diminution de la fréquence des EP conduit à un double comptage dans le modèle. En effet, le taux d’EP est une première fois réduit en raison de la baisse du VEMS et une seconde fois en raison du différentiel de risque relatif entre les deux bras de traitement des essais cliniques. Or, si l’effet additionnel de lumacaftor/ivacaftor sur les EP est complètement capturé par le RR qui s’applique après le calcul des EP à partir du VEMS dans l’équation de Whitting, il aurait alors dû être soustrait du VEMS associé à lumacaftor/ivacaftor dans cette équation. En d’autres termes, pour éviter le double compte de l’effet de lumacaftor/ivacaftor sur la fréquence des EP, il aurait fallu par exemple utiliser dans un premier les valeurs de VEMS associées au SoC seul pour déterminer la fréquence des EP pour les 2 bras de traitements et ensuite appliquer le RR, ce qui n’est pas le cas dans le modèle.

Enfin, l’effet du traitement sur les EP est supposé persister de la même manière pendant toute la période où le patient est sous lumacaftor/ivacaftor, cette hypothèse n’étant pas justifiée à partir d’études cliniques à long terme ou des publications.

Observance

Le taux d’observance introduit dans le modèle de 81% est inférieur à celui constaté dans les essais TRAFFIC et TRANSPORT, ce dernier s’élèvant à 96,5%. Les auteurs ont jugé ce taux peu réaliste en vie réelle étant donné que lumacaftor/ivacaftor est un traitement au long cours. Ce taux de 81% a été testé en analyse de sensibilité et ce paramètre semble être celui ayant le plus d’impact sur le RDCR (Section 4.6.1). Il y a donc une incohérence sur les données sources utilisées, à savoir une efficacité du traitement calculée sur la base d’une observance à 96,5% (données des essais) et un coût associé l’effet traitement dans le modèle calculé sur base d’une observance de 81% (Section 4.4.2).

En résumé, les principales critiques relatives à la modélisation sont les suivantes :

- Le modèle est en adéquation avec les précédents modèles d’efficience publiés dans la mucoviscidose ;
- Il peut exister un éventuel biais d’hétérogénéité entre les patients du modèle et les patients français ;
- Le manque de maturité des données sur l’évolution du VEMS à long terme conduit les auteurs à faire des hypothèses d’extrapolation difficilement vérifiables et favorables au produit qui biaisaient l’analyse ;
- Les hypothèses simplificatrices pour les paramètres suivants sont favorables au produit, à savoir :
la sous-estimation de la survie associée au SoC seul ;
le double compte de l’effet traitement de lumacaftor/ivacaftor sur les exacerbations pulmo-
naires ;
l’observance appliquée différemment sur les coûts et sur l’effet traitement de lumacaf-
tor/ivacaftor.

4.3 Mesure et valorisation des états de santé

4.3.1 Evaluation des résultats de santé telle que présentée par les auteurs

Utilités liées aux états du modèle : méthode et données

Les résultats de santé dépendent de l’état dans lequel se trouve le patient en prenant en compte le degré d’atteinte de sa fonction pulmonaire (% du VEMS par rapport à la valeur théorique) et la réalisation d’une transplantation pulmonaire.

Source de données

– Utilités associées à l’atteinte de la fonction pulmonaire

Dans un premier temps, sont identifiées les sources possibles pour le recueil des données d’utilité associées aux différents niveaux de VEMS en fonction des recommandations méthodologiques de la HAS.

Dans les essais cliniques de phase III TRAFFIC et TRANSPORT, la qualité de vie des patients inclus a été évaluée au moyen d’un questionnaire spécifique validé pour la mucoviscide (CFQ-R). Les résultats présentés à titre informatif ne montrent pas d’amélioration statistiquement significative du score CFQ-R relatif aux symptômes respiratoires à 24 semaines entre le bras SoC + lumacaftor/ivacaftor et le bras placebo.

Les patients inclus dans ces essais ont également été interrogés à chaque visite de suivi au moyen d’un questionnaire EQ-5D. Les résultats, valorisés selon une échelle de valorisation spécifique au Royaume-Uni, fournissaient dans de nombreux cas des valeurs d’utilité correspondant à un état de parfaite santé (valeur d’utilité =1). Les valeurs d’utilité obtenues dans les essais stratifiées par niveau de VEMS confirment également les niveaux d’utilité très élevés : moyenne = 0,912 (-0,003 -1), médiane = 1 (0,812-1).

Selon les auteurs du rapport, au vu de l’impact de la mucoviscidose sur la vie des patients et le fardeau de la maladie, ces résultats ne sont pas cohérents et ne permettent pas de rendre compte de l’impact de la maladie sur la qualité de vie des patients.

Une revue de la littérature est ensuite présentée dans l’objectif d’identifier toutes les sources de données de qualité de vie disponibles chez les patients souffrant de cette pathologie. Cette revue a été réalisée selon les principes du PICOS (population, intervention, comparators, outcomes and study type). La stratégie de recherche documentaire a été élaborée pour la période 2000-mai 2015 à partir d’une interrogation de bases de données et d’une revue de la littérature grise. Le processus de recherche et de sélection réalisé est illustré à partir d’un diagramme ; 18 références ont été retenues.

Une seule source française d’utilités élicitées au moyen d’une échelle de qualité de vie générique (EQ-5D-3L) a été identifiée15 (Chevreul et al. 2014). Les résultats de cette étude n’ont

cependant pas été retenus car ils ne présentaient pas de valeurs d’utilité stratifiées par niveau de VEMS.

Seules deux études rendaient compte de la qualité de vie liée à la santé selon le niveau du VEMS :

- L’étude de Solem et al. (2014) dans laquelle les données du questionnaire EQ-5D ont été valorisées selon une matrice de pondération américaine mais dont les valeurs d’utilité obtenues étaient très proches de 1. Ces données qui avaient été critiquées par le NICE à l’occasion de l’évaluation de l’efficience de KALYDECO® n’ont pas été retenues.
- L’étude de Whiting et al. (2014) qui a été utilisée pour l’évaluation de l’efficience du traitement KALYDECO pour le NICE.

Les valeurs d’utilité stratifiées par niveau de VEMS prises en compte dans le modèle correspondent à celles retenues dans l’évaluation de l’efficience de KALYDECO® pour le NICE (Whiting, 2014). Elles ont été obtenues à partir du questionnaire spécifique de qualité de vie validé pour les patients atteints de mucoviscidose publié dans l’étude de Gee et al. en 2000.

La population de l’étude de Gee et al. était composée de 223 patients (103 femmes et 120 hommes, sexe ratio 1,17 hommes : 1 femme), d’âge moyen 25,15 ans (14-52 ans) souffrant de mucoviscidose et traités dans les centres spécialisés de Manchester et de Leeds au Royaume-Uni.

Les questionnaires SF-36 étaient remis aux patients inclus à l’occasion d’une consultation ambulatoire au cours de laquelle leurs caractéristiques cliniques et démographiques étaient collectées. Les questionnaires ont été retournés par voie postale et les caractéristiques des patients répondants et non répondants ne présentaient pas de différence à l’exception du genre : significativement, plus de non-répondeurs étaient des hommes. Les résultats ont été stratifiés par atteinte de la fonction ventilatoire (VEMS).

Les résultats du questionnaire SF-36 rapportés dans cette étude ont été « transformés » en utilisés par une division par 100 : 27% des patients inclus avaient une VEMS faible (≥ 70%) et une utilité moyenne de 0,803, 43% avaient une VEMS modérée (entre 49% et 60%) et une utilité moyenne de 0,749 et 29% avaient une VEMS sévère (< 40%) et une utilité moyenne de 0,688.

Les valeurs d’utilité en fonction de la VEMS introduites dans le modèle sont présentées dans le Tableau 17.

Les auteurs du rapport mettent en évidence les limites de ces données :

- Seuls 55% des patients suivis ont fourni des réponses au questionnaire SF-36 dans l’étude menée par Gee et al. Bien que les patients répondants et non-répondeurs n’étaient pas significativement différents au regard de leurs caractéristiques (à l’exception du genre), l’existence d’un biais au regard de ces résultats ne peut être exclu.
- Ces valeurs d’utilité n’ont pas été obtenues en France, au moyen d’une méthode validée par la HAS. La méthode employée s’avère par ailleurs triviale, en ne recourant pas à des équations spécifiques de transformation des scores SF-36 en utilisés (bien que ceux-ci ne soient pas recommandés par la HAS). Cependant, les utilisés de l’étude de Chevreul et al. se révèlent relativement proches de celles retenues (moyenne : 0.728 vs 0.730).

16 Solem CT Vera Llonch M, Liu S, Botteman M. Responsiveness Of The EQ-5D Index And Visual Analog Scale To Changes In Lung Function In Patients With Cystic Fibrosis Value Health. 2014.
Utilités associées à la survie post-greffe

En l’absence de données françaises d’utilité relatives à la réalisation d’une transplantation pulmonaire, les données utilisées dans le modèle sont également celles retenues dans l’évaluation de Whitting et al. (2014). Ces données ont été produites à partir des résultats de l’étude d’Anyanwu19 et al. (2002) réalisée chez des patients ayant subi une greffe pulmonaire, quelle que soit l’affection responsable de l’opération dans sept centres au Royaume-Uni. Les scores EQ-5D d’Anyanwu et al. ont été recalculés par Whitting et al. pour les seuls patients ayant subi une transplantation pulmonaire bilatérale qui constitue la situation la plus vraisemblable pour des patients souffrant de mucoviscidose. Les utilités obtenues par mois de transplantation ont été pondérées pour constituer une valeur d’utilité annuelle moyenne de 0.81.

Désutilité liée à l’impact des exacerbations pulmonaires

Source de données

- Désutilités associées à l’impact des exacerbations pulmonaires sur la qualité de vie

Le nombre d’exacerbations pulmonaires expérimentées par le patient à chaque cycle est modélisé au moyen d’une équation en fonction de l’âge du patient, de sa fonction pulmonaire et du traitement reçu.

Deux hypothèses posées dans le modèle sont rappelées :

- Seules les exacerbations pulmonaires requérant une hospitalisation ou un traitement antibiothérapie par intraveineuse sont prises en compte dans la modélisation.
- Les effets du traitement sur le VEMS et le nombre d’exacerbations pulmonaires sont partiellement indépendants.

En s’appuyant sur la littérature les auteurs du rapport montrent que l’occurrence des exacerbations pulmonaires est associée à une désutilité dans l’application de la qualité de vie du patient au cycle écoulé.

A partir d’une revue systématique de la littérature, les auteurs ont identifié trois sources de données qui comprenaient la mesure ou la valorisation de l’impact des exacerbations pulmonaires sur la qualité de vie des patients :

- Etude de Tappenden20 et al. (2013) tient compte des désutilités associées aux EP selon qu’il s’agit d’EP majeures (-0,174) et mineures (-0,015) (données issues de Bradley21 et al., 2013).
- Evaluation TA266 du NICE22 relative au traitement par mannitol en inhalation qui considérait une désutilité de 0,23.
- Etude de Solem23 et al., qui a montré, qu’en fonction du VEMS du patient, l’occurrence d’une EP requérant une hospitalisation était associée à une désutilité de 0,0695. Les EP ne nécessitant pas d’hospitalisation étaient associées à un impact négligeable sur la qualité de vie (+0,0007). En tenant compte de la part des EP menant à l’hospitalisation des patients, la désutilité moyenne obtenue est de -0,0256.

22 NICE. Mannitol dry powder for inhalation for treating cystic fibrosis (TA266). 2012
23 Solem CT Vera Llonch M, Liu S, Botteman M. Responsiveness Of The EQ-5D Index And Visual Analog Scale To Changes In Lung Function In Patients With Cystic Fibrosis Value Health. 2014.

EQ-5D index (UK)= 0.6782 + 0.5614 x %FEV$_1$ – 0.2941 x %FEV$_2$ – 0.0256 x(Experiencing a PE)

Les données utilisées pour la détermination de cette équation, ainsi que la durée associée à l’application de cette désutilité sont issues de l’essai STRIVE. Il s’agit d’un essai contrôlé vs placebo, multicentrique, randomisé, en double aveugle, évaluant pendant 48 semaines l’efficacité et la tolérance associées à la prise d’ivacaftor (Kalydeco®) par les patients souffrant de mucoviscidose, âgés de 12 ans et plus et ayant au moins une copie la mutation G551D du gène CFTR. Le VEMS, la qualité de vie (questionnaire EQ-5D) et l’occurrence d’EP faisaient partie des résultats recueillis durant l’essai.

Au cours de la période de suivi, 161 patients ont permis de renseigner 1 214 résultats de qualité de vie associée au VEMS ; 146 EP ont été relevées chez 72 patients, dont 52 prises en charge à l’hôpital.

Les résultats issus de toutes les visites de suivi pour tous les traitements (Kalydeco® et placebo) ont été agrégés permettant le développement de l’équation de qualité de vie indépendante du traitement reçu. La valorisation de l’utilité retenue dans l’analyse est basée sur l’algorithme Time Trade-Off pour le Royaume-Uni.

L’algorithme est basé sur un modèle à effet mixte et à mesures répétées (MMRM) pour chaque visite de suivi. Le modèle statistique développé a pour variable expliquée l’utilité (EQ-5D) et le VEMS et l’occurrence d’EP pour variable explicative. La désutilité de 0.0256 prise en compte dans le modèle correspond au coefficient associé à la variable explicative binaire « occurrence d’EP » dans l’analyse MMRM. Une durée d’EP de 23,9 jours (= 0.356*30+0.644*20.6) est appliquée pour chaque EP du cycle, conformément aux observations faites au cours de l’essai STRIVE : 35,6% des EP requièrent une hospitalisation et durent en moyenne 30 jours et 64.4% des EP ne requièrent pas d’hospitalisation et durent en moyenne 20,6 jours.

--- Désutilités associées aux effets indésirables du traitement sur la qualité de vie

Les résultats de la revue de la littérature conduite par les auteurs du rapport n’ont pas permis de mettre en évidence de valorisation de l’impact des effets indésirables du traitement sur la qualité de vie. Du fait de la gravité relative des effets indésirables rapportés dans les essais pour lumacaftor/ivacaftor, en particulier au regard de l’impact de la pathologie et de la prise en charge qui lui est associée, il est considéré que l’impact des effets indésirables sur la qualité de vie est pris en compte par les utilités associées à l’atteinte de la fonction respiratoire du patient. Cela est appuyé par le fait que les effets indésirables modélisés sont pour une part des effets indésirables respiratoires.

▶ Données introduites dans le modèle

Utilités liées aux états du modèle
Tableau 17. Valeurs d’utilité en fonction du VEMS utilisées dans le scénario de référence

<table>
<thead>
<tr>
<th>VEMS</th>
<th>Utilité moyenne</th>
<th>Nombre de patients</th>
<th>VEMS moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faible >70%</td>
<td>0,803</td>
<td>60</td>
<td>86,7</td>
</tr>
<tr>
<td>Modérée entre 49% et 60%</td>
<td>0,749</td>
<td>97</td>
<td>54,2</td>
</tr>
<tr>
<td>Sévère <40%</td>
<td>0,688</td>
<td>66</td>
<td>29,4</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,728</td>
<td>223</td>
<td>54,3</td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l’industriel

Tableau 18. Valeurs d’utilité annuelle associée à la survie post-greffe

<table>
<thead>
<tr>
<th>Durée post-transplantation</th>
<th>Utilité moyenne</th>
<th>Durée associée (mois)</th>
<th>Utilité annuelle moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6 mois</td>
<td>0,75</td>
<td>6</td>
<td>0,81</td>
</tr>
<tr>
<td>7-18 mois</td>
<td>0,83</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>19-36 mois</td>
<td>0,81</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>>36 mois</td>
<td>0,82</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l’industriel

Désutilités associées à l’impact des exacerbations pulmonaires et aux effets indésirables du modèle

La désutilité associée à l’occurrence d’une exacerbation pulmonaire retenue pour l’analyse de référence est de 0,0256 associée à une durée de l’événement de 23,9 jours. Cette désutilité est appliquée pour chaque exacerbation pulmonaire du cycle.

Aucune désutilité associée aux effets indésirables du traitement sur la qualité de vie n’a été appliquée dans le modèle.

L’espérance de vie et les QALYS sur l’horizon temporel sont présentés dans la partie résultats (section 4.6) en fonction de 3 scénarios d’évolution du pourcentage de VEMS après la 24ème semaine de traitement chez les patients traités par SoC+lumacaftor/ivacaftor.

4.3.2 Analyse critique de l’estimation des résultats de santé

Méthode et données

Concernant les utilités associées à l’atteinte de la fonction pulmonaire, les auteurs présentent tout d’abord les données issues des essais cliniques de phase III TRAFFIC et TRANSPORT dans lesquels la qualité de vie des patients a été évaluée au moyen d’un questionnaire EQ-5D et valorisée selon une échelle de valorisation spécifique au Royaume-Uni, dont il n’est pas précisé si les scores de préférences étaient issus de la population générale. Les résultats fournissaient des valeurs d’utilité très proches de 1. Les auteurs mettent en évidence l’incohérence de ces résultats qui ne permettait pas de rendre compte de l’impact de la maladie sur la qualité de vie des patients. Ils identifient des résultats similaires chez des
patients atteints de pathologies chroniques et soulignent la difficulté d’évaluer les états de santé dans le cas d’une pathologie chronique qui survient dès la petite enfance au moyen de questionnaires de qualité de vie générique.

Les justifications apportées par les auteurs concernant l’incohérence des données et le choix de ne pas les utiliser dans le modèle sont recevables. Il faut cependant souligner que la HAS recommande de valoriser les états de santé par des scores de préférence issus de la population générale, ce qui n’est pas précisé dans les éléments présentés par les auteurs du rapport.

Une revue de la littérature est ensuite présentée dans l’objectif d’identifier toutes les sources de données de qualité de vie disponibles chez les patients souffrant de cette pathologie dont les critères de sélection des résultats de la revue sont clairement précisés.

Le choix de retenir les valeurs d’utilité stratifiées par niveau de VEMS prises en compte dans le modèle d’évaluation de l’efficience de KALYDECO® pour le NICE (étude de Whiting et al., 2014) par rapport à la seule source française identifiée est argumenté. Ces valeurs ont été obtenues à partir du questionnaire spécifique de qualité de vie validé pour les patients atteints de mucoviscidose publié dans l’étude de Gee et al. en 2000, étude relativement ancienne qui n’a pas été fournie dans le dossier initial ni lors de l’échange technique malgré notre demande. Les explications fournies par les auteurs du rapport permettent de montrer que la population de l’étude de Gee et al. était composée de 223 patients souffrant de mucoviscidose traités dans des centres spécialisés au Royaume-Uni qui ont répondu à un questionnaire SF-36 à l’issue d’une consultation ambulatoire au cours de laquelle leurs caractéristiques cliniques et démographiques étaient collectées. Les auteurs du rapport ne discutent pas les possibilités et limites liées à la transposition de ces résultats à aux patients français homozygotes pour la mutation F508del du gène CFTR notamment en termes de sévérité de la maladie (proportion de patients par niveau de VEMS). Par contre, ils reconnaissent l’existence de biais au regard des résultats obtenus dans cette étude et surtout le fait que les valeurs d’utilité n’ont pas été obtenues au moyen d’une méthode validée par la HAS à partir de données françaises : « la méthode employée s’avère par ailleurs triviale, en ne recourant pas à des équations spécifiques de transformation des scores SF-36 en utilités (bien que ceux-ci ne soient pas recommandés par la HAS) ». Il existe pour le questionnaire SF36 une fonction de transformation qui permet de traduire des scores issus de questionnaires de qualité de vie associée à la santé non fondés sur les préférences en scores de préférence EQ-5D.

Concernant les résultats, les auteurs montrent que les utilités identifiées dans la seule étude française (Chevreul et al. 2014), sont assez proches de celles retenues in fine dans le modèle (0,728 vs 0,730).

Au final :

- vu l’incohérence des valeurs d’utilité obtenues dans les essais cliniques au moyen de l’instrument générique EQ-5D ;
- vu la revue de la littérature qui n’a pas permis d’identifier d’autres sources de données sur la population cible fondées sur des systèmes de classification d’états de santé avec scores de préférence validés en France ;
- vu la proximité des valeurs d’utilité retenues dans le modèle avec celles d’une étude Française récente, fondée sur le questionnaire EQ-5D, bien que cette étude concerne l’ensemble des patients atteints de mucoviscidose et que les valeurs d’utilité ne soient pas associées au niveau de VEMS (Chevreul, 2015);

les valeurs d’utilité associées à l’atteinte de la fonction pulmonaire utilisées dans le modèle peuvent être considérées comme acceptables malgré le fait qu’elles ne sont pas conformes à la méthodologie recommandée par HAS.

Concernant les utilités associées à la qualité de vie des patients greffés, les données retenues dans le modèle pour les patients transplantés sont partiellement conformes à la méthodologie recommandée par la HAS dans la mesure où elles ont été produites à partir de patients traités au Royaume-Uni, la transposabilité des résultats aux patients français homozygotes pour la mutation F508del du gène CFTR n’a pas été discutée. En outre, le détail de la valorisation des scores d’utilité pour les seuls patients ayant subi une transplantation pulmonaire bilatérale n’a pas été fourni.

Dans le modèle, une utilité moyenne annuelle a été retenue alors que les données étaient disponibles en fonction de 3 périodes post-transplantation 0-6 mois, 7-18 mois, 19-36 mois pour lesquelles on constate une augmentation de l’utilité en fonction de la survie post-greffe. Les auteurs n’ont pas discuté la possibilité d’appliquer une valeur d’utilité par période.

Concernant les désutilités associées à l’occurrence d’une EP, la méthode d’estimation repose sur une équation qui est fonction du VEMS du patient. Les sources de données utilisées pour déterminer cette équation sont issues d’un essai réalisé au Royaume-Uni, non transmis. Les données disponibles ne permettent pas de montrer si les données d’utilité ont été obtenues uniquement chez des patients dont les exacerbations pulmonaires nécessitent une hospitalisation ou une antibiothérapie par intraveineuse, en cohérence avec les hypothèses retenues dans le modèle. En effet, chez ces patients l’impact de la survenue d’EP sur la qualité de vie pourrait s’avérer plus important, notamment en cas d’hospitalisation.

La valorisation de l’utilité retenue dans l’analyse est basée sur l’algorithme Time Trade-Off pour le Royaume-Uni ; la transposabilité des données au cas des patients français homozygotes pour la mutation F508del du gène CFTR n’a pas été discutée.

Par ailleurs la question d’un double comptage de l’occurrence des EP dans les utilités associées à l’atteinte de la fonction pulmonaire peut se poser et n’a pas été discutée. La qualité de vie associée à l’atteinte de la fonction pulmonaire ayant été recueillie par questionnaire remis à l’occasion d’une consultation ambulatoire et complétés à posteriori, il est difficile de savoir s’il a été complété au moment de la survenue d’un événement particulier.

Le choix de ne pas associer une désutilité lié aux traitements est défavorable au produit. Le détail de l’analyse poolée des taux d’effets secondaires de grade 3 et 4 des études TRAFFIC et TRANSPORT pour les deux bras montre en effet que le taux d’événements est plus fréquent en moyenne pour les patients pris en charge uniquement par le SOC. Par ailleurs, lumacaftor/ivacaftor est un traitement administré par voie orale qui peut potentiellement avoir un effet sur la survenue à la baisse des EP et donc réduire l’administration d’antibiotiques par voie intraveineuse et les hospitalisations qui impactent fortement la qualité de vie des patients.

Au total, il faut souligner la forte hétérogénéité dans les méthodes et les données utilisées pour estimer les résultats de santé qui ne sont pas conformes à la méthodologie recommandée par la HAS. En outre, l’ensemble des données d’utilité retenues dans le modèle n’ont pas été estimées sur des patients français atteints de mucoviscidose homozygotes pour la mutation F508del du gène CFTR et n’ont pas été valorisées selon des scores de préférences issus de la population générale. Toutefois, les données retenues pour la valorisation des états de santé associés à la dégradation de la fonction respiratoire sont très proches des données françaises obtenues au moyen du questionnaire EQ-5D de l’étude française de Chevreul.
Présentation des résultats

Les tableaux relatifs aux données introduites dans le modèle montrent des incohérences dans la moyenne des valeurs d’utilité en fonction du VEMS. Les scores d’utilité associés à chaque état de santé et les désutilités associées à l’impact des exacerbations pulmonaires sur la qualité de vie qui sont intégrés dans le modèle, sont clairement présentés par les auteurs. Les années de vie et les QALY cumulés par traitement sont présentés en fonction des 3 scénarios et stratifiés selon la catégorie d’âge.

Les auteurs ne discutent pas la cohérence des résultats obtenus par rapport aux données de vie réelle sur la durée de vie.
4.4 Mesure et valorisation des coûts

4.4.1 Evaluation des coûts telle que présentée par les auteurs

► Coûts pris en compte

Seuls les coûts directs sont pris en compte dans l’analyse de référence.

Les coûts intégrés dans l’analyse sont :

- Le coût total des traitements : coût d’acquisition, d’administration, coût de suivi ophtalmologique et de la fonction hépatique et coûts de traitement des effets indésirables ;
- Le coût de la prise en charge stratifié selon la sévérité de l’atteinte pulmonaire ;
- Le coût de la prise en charge des exacerbations pulmonaires ;
- Le coût de la procédure et du suivi des transplantations pulmonaires ;
- Le coût du décès.

► Mesure, valorisation et calcul des coûts liés au traitement

Coûts d’acquisition des traitements

Dans le modèle, le coût d’acquisition de lumacaftor/ivacaftor est de € PFHT par boîte de 112 comprimés ; il correspond au prix revendiqué par l’industriel.

Le coût annuel de lumacaftor/ivacaftor selon une posologie de deux comprimés toutes les 12h (soit une dose journalière de 800 mg de lumacaftor et 500 mg d’ivacaftor) et 365,25 jours par an est donc de € PFHT.

Les coûts des autres traitements inclus dans la prise en charge standard (SoC) sont comptabilisés dans le coût de prise en charge des patients.

Des analyses de sensibilité ont été réalisées avec des coûts d’acquisition de lumacaftor/ivacaftor inférieurs et supérieurs à la valeur de référence (50%, 90%, 95% et 110%).

Coûts d’administration

Aucun coût d’administration n’est pris en compte dans la mesure où lumacaftor/ivacaftor est administré _per os_. Les coûts d’administration des traitements associés à la prise en charge standard (SoC) sont intégrés au coût de prise en charge de la maladie.

Coûts de suivi ophtalmologique

Conformément au RCP de lumacaftor/ivacaftor, la réalisation d’un examen ophtalmologique a été pris en compte dans les coûts de suivi. Selon une hypothèse conservatrice, ce coût est appliqué au début de la simulation pour tous les patients initiant le traitement par lumacaftor/ivacaftor.

Au total, le coût d’une consultation prenant en compte les dépassements d’honoraires a été estimé à 37,90€ (coût actualisé pour l’année 2015).

Coûts de suivi de la fonction hépatique

Un coût de suivi de la fonction hépatique est appliqué aux patients traités par lumacaftor/ivacaftor, conformément au RCP du produit. Une consultation ainsi que la réalisation de tests évaluant la fonction hépatique (ASAT, ALAT, Bilirubine) sont considérés...
à 1, 3, 6 et 9 mois de traitement. Ce suivi devient annuel après un nouvel examen à 12 mois de traitement.

Tableau 19. Coût annuel de suivi de la fonction hépatique

<table>
<thead>
<tr>
<th></th>
<th>Unité</th>
<th>Année 1</th>
<th>Années suivantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consultation</td>
<td>25,00€</td>
<td>X4</td>
<td>100,00€</td>
</tr>
<tr>
<td>Bilan hépatique</td>
<td>12,96€</td>
<td>X4</td>
<td>51,84€</td>
</tr>
<tr>
<td>Coût annuel de suivi de la fonction hépatique</td>
<td></td>
<td></td>
<td>151,84€</td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l’industriel

Observance et interruptions de traitement

Un taux mensuel d’interruption est défini dans le modèle de sorte que le « taux d’interruption constaté dans les essais TRAFFIC et TRANSPORT soit reproduit après 24 semaines de traitement. Après 24 semaines, les patients ne peuvent plus interrompre leur traitement (excepté en cas de transplantation pulmonaire) ». Il a été constaté que 6,8% des patients avaient arrêté leur traitement au cours des 24 semaines de suivi des essais de phase III. Une étude en scénario basé sur l’hypothèse d’un taux d’interruption du traitement de 30% à 15 ans (taux annuel d’interruption : 1,9%) a également été réalisée.

Un taux d’observance de 81% est appliqué au coût d’acquisition du traitement dans l’analyse de référence. Ce taux d’observance est le taux constaté par Vertex dans le cadre des études de suivi de KALYDECO®.

Les coûts de traitement des événements indésirables

Selon l’industriel, du fait de la gravité relative des effets indésirables rapportés dans les essais pour lumacaftor/ivacaftor, en particulier au regard de l’impact de la pathologie et de la prise en charge qui lui est associée, il est considéré que les événements indésirables sont associés à une prise en charge ponctuelle qui consiste en une consultation avec un spécialiste ainsi qu’à la prescription et la dispensation d’un bronchodilatateur pour les épisodes de dyspnée et de respiration anormale.

Tableau 20. Coût de prise en charge des événements indésirables dans le modèle par occurrence

<table>
<thead>
<tr>
<th>Effet Indésirable</th>
<th>SoC seul</th>
<th>SoC + lumacaftor/ivacaftor</th>
<th>Coût</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspnée</td>
<td>16.1%</td>
<td>27.9%</td>
<td>32.28€</td>
</tr>
<tr>
<td>Diarrhée</td>
<td>17.3%</td>
<td>22.3%</td>
<td>28.00€</td>
</tr>
<tr>
<td>Nausées</td>
<td>15.7%</td>
<td>20.8%</td>
<td>28.00€</td>
</tr>
<tr>
<td>Respiration anormale</td>
<td>12.3%</td>
<td>20.0%</td>
<td>32.28€</td>
</tr>
<tr>
<td>Douleurs oropharyngées</td>
<td>16.7%</td>
<td>18.9%</td>
<td>28.00€</td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l’industriel
Mesure, valorisation et calcul des coûts de prise en charge stratifiés selon la sévérité de l’atteinte pulmonaire

L’étude de Chevreul fait partie du projet Européen BURQOL-RD qui a pour objectif de recueillir des données sur les coûts et la qualité de vie en rapport avec la santé de patients atteints de maladies rares et de leurs aidants. Cette étude rend compte des résultats de ce projet au regard des patients français atteints de mucoviscidose.

Il s’agit d’une étude rétrospective menée de septembre 2012 à mai 2013 incluant 240 patients recrutés via le centre de référence pour le traitement de la mucoviscidose de Nantes-Roscoff, la Société française de la mucoviscidose et l’association Vaincre la mucoviscidose. Les patients inclus dans l’étude sur une base volontaire ont renseigné leurs caractéristiques socio-démographiques (âge, sexe, niveau de formation, statut marital, emploi, etc.), leur consommation médicale des six derniers mois (médicaments, dispositifs médicaux, consultations, analyses et autres examens, etc.), l’impact de leur maladie sur leur emploi et la présence d’aidants au moyen d’un questionnaire anonyme en ligne.

Les coûts associés aux ressources consommées l’ont été selon une perspective sociétale avec les coûts pour l’année 2012 comme référence. Chaque ressource déclarée consommée au cours des six derniers mois par les patients a été associée à son coût. Le coût moyen par patient a ensuite été annualisé.

Les autres coûts directs évalués dans la publication (assistance à domicile par un professionnel de santé, transport non pris en charge par l’assurance maladie, valorisation de l’aide des aidants proches) ne sont pas intégrés au coût de prise en charge des patients. Cela se justifie par le fait que les patients adultes (> 18 ans) ont déclaré recourir à 0 heure d’assistance à domicile par un professionnel par semaine et par le fait que la valorisation du temps investi par les aidants dans les soins du patient ne font pas partie de la perspective retenue par la HAS.

L’âge moyen des enfants inclus dans l’étude de Chevreul et al. étant de 8,5 ans (moins d’un quart des enfants ayant 12 ans et plus en considérant une distribution normale de l’âge autour de la moyenne, SD=4.9), les coûts retenus pour la modélisation sont ceux obtenus chez les adultes. Les coûts de l’étude de Chevreul utilisés dans le modèle et leurs valeurs actualisées à 2015 au moyen de l’indice des prix à la consommation pour les biens et services de santé sont résumés dans le tableau ci-dessous.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coûts médicaux directs</td>
<td>23 968 €</td>
<td>23 987,15 €</td>
</tr>
<tr>
<td>Médicaments</td>
<td>8 277 €</td>
<td>8 283,61 €</td>
</tr>
<tr>
<td>Consultations et analyses (ville)</td>
<td>3 098 €</td>
<td>3 100,48 €</td>
</tr>
<tr>
<td>Hospitalisations</td>
<td>11 445 €</td>
<td>11 454,15 €</td>
</tr>
<tr>
<td>Dispositifs médicaux</td>
<td>1 127 €</td>
<td>1 127,90 €</td>
</tr>
<tr>
<td>Transport</td>
<td>21 €</td>
<td>21,02 €</td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l’industriel

Les coûts de l’étude de Chevreul et al. ne prenant pas en compte l’atteinte de la fonction pulmonaire (VEMS), ces coûts ont été stratifiés selon les résultats de l’étude de Colombo et al. (2013). Cette étude réalisée dans le nord de l’Italie avait pour objectif d’évaluer les coûts de prise en charge de 106 patients souffrant de mucoviscidose dans le centre de référence de Milan. L’estimation du coût des hospitalisations, des consultations et analyses réalisées en ville, des médicaments, des dispositifs médicaux et des produits de nutrition a été réalisé à partir d’un micro-costing. Dans cette étude, les coûts de prise en charge ont été stratifiés selon l’atteinte pulmonaire chez les patients de plus de 5 ans au sein de catégories définies selon les mêmes valeurs de VEMS que celles retenues dans le modèle.

Le coût moyen est obtenu par la moyenne du coût total moyen par catégorie de VEMS pondérée par le nombre de patients dans chaque catégorie de VEMS. Les patients ayant été inclus à l’étude de façon consécutive, cette approche apparaît acceptable en termes de représentativité des catégories d’atteinte pulmonaire chez les patients inclus.

Ce coût intègre les produits de nutrition. Il n’est utilisé que pour stratifier le coût de transport (ce dernier n’ayant pas de catégorie correspondante) obtenu par Chevreul et al.

Tableau 22. Coûts de prise en charge des patients atteints de mucoviscidose par poste de coût et par atteinte de la fonction pulmonaire repris de l’étude de Colombo et al. (2013)

<table>
<thead>
<tr>
<th>Postes</th>
<th>Coût moyen</th>
<th>VEMS ≥ 70% (n=64) (%coût moyen)</th>
<th>VEMS 40-70% (n=29) (%coût moyen)</th>
<th>VEMS < 40% (n=13) (%coût moyen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coût total</td>
<td>16 332 €</td>
<td>12 186 € (75%)</td>
<td>19 300 € (118%)</td>
<td>30 123 € (184%)</td>
</tr>
<tr>
<td>Médicaments</td>
<td>12 047 €</td>
<td>9 625 € (80%)</td>
<td>13 996 € (115%)</td>
<td>19 625 € (127%)</td>
</tr>
<tr>
<td>Consultations et analyses (ville)</td>
<td>909 €</td>
<td>797 € (88%)</td>
<td>1 045 € (115%)</td>
<td>1 158 € (127%)</td>
</tr>
<tr>
<td>Hospitalisations</td>
<td>3 044 €</td>
<td>1 495 € (49%)</td>
<td>3 886 € (128%)</td>
<td>8 793 € (289%)</td>
</tr>
<tr>
<td>Dispositifs médicaux</td>
<td>179 €</td>
<td>168 € (94%)</td>
<td>144 € (80%)</td>
<td>312 € (174%)</td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l’industriel

Le rapport du coût par niveau de VEMS par rapport à la moyenne observée dans l’étude de Colombo et al. a été appliqué aux postes de coût de Chevreul et al. selon les...

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coût total</td>
<td>Coût total</td>
</tr>
<tr>
<td>Médicaments</td>
<td>Médicaments</td>
</tr>
<tr>
<td>Consultations et analyses (ville)</td>
<td>Consultations et analyses (ville)</td>
</tr>
<tr>
<td>Hospitalisations</td>
<td>Hospitalisations</td>
</tr>
<tr>
<td>Dispositifs médicaux</td>
<td>Dispositifs médicaux</td>
</tr>
<tr>
<td></td>
<td>Transport</td>
</tr>
<tr>
<td>Produits diététiques</td>
<td></td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l’industriel

Les coûts de Chevreul et al. stratifiés par niveau de VEMS sont finalement compilés en trois postes de coût : hospitalisations, médicaments et soins ambulatoires (consultations et analyses (ville) + Transport + dispositifs médicaux).

<table>
<thead>
<tr>
<th>Niveau de VEMS</th>
<th>Hospitalisations</th>
<th>Médicaments</th>
<th>Consultations + Analyses</th>
<th>Dispositifs médicaux</th>
<th>Transport</th>
<th>Ambulatoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 70%</td>
<td>4 442 €</td>
<td>6 451 €</td>
<td>2 703 €</td>
<td>1 058 €</td>
<td>16 €</td>
<td>3 777 €</td>
</tr>
<tr>
<td>40 – 70%</td>
<td>13 438 €</td>
<td>9 456 €</td>
<td>3 549 €</td>
<td>907 €</td>
<td>25 €</td>
<td>4 480 €</td>
</tr>
<tr>
<td>< 40%</td>
<td>31 902 €</td>
<td>13 327 €</td>
<td>3 934 €</td>
<td>1 965 €</td>
<td>39 €</td>
<td>5 938 €</td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l’industriel

Le nombre moyen d’exacerbations pulmonaires dans le registre français de la mucoviscidose a été estimé en considérant que les 4 501 patients ayant requis une antibiothérapie par intraveineuse (IV) comptaient un proxy pour le nombre d’EP. On obtient ainsi une fréquence annuelle moyenne de 0.72 EP, associée au coût de prise en charge des EP (2 688 €, voir le détail du calcul du coût dans le paragraphe suivant) pour constituer un coût annuel moyen de prise en charge des EP de 1 935 € par patient, déduit des coûts de prise en charge moyen obtenus de l’étude de Chevreul et al.

► Mesure, valorisation et calcul des coûts de prise en charge des exacerbations pulmonaires

Les EP modélisées sont celles qui requièrent une hospitalisation ou une antibiothérapie par intraveineuse (IV). Le coût associé à l’occurrence des EP dans le modèle est donc fonction
de la fréquence des EP avec hospitalisation et de celle des EP prises en charge à domicile avec antibiothérapie IV. Ces taux sont issus du registre français de la mucoviscidose qui permet d’estimer que 25,6% des EP sont traitées à l’hôpital et 71,2% le sont à domicile.

Les EP simulées étant associées à une antibiothérapie IV, les EP prises en charge à domicile requièrent la mise en place d’une chambre implantable.

Le coût journalier de traitement antibiotique a été calculé pour intégrer les actes infirmiers. La conférence de consensus française pour la prise en charge du patient atteint de mucoviscidose (pneumologie et infectiologie) statue que le traitement des EP doit être basé sur l’administration d’antibiotiques aux plus fortes doses possibles du fait des caractéristiques pharmacocinétiques propres aux patients (volume de distribution et clairance rénale plus importants).

Sur l’avis de l’expert consulté, les traitements antibiotiques retenus pour le traitement des EP sont la céftazidime et la tobramycine. Sur la base des RCP et de la conférence de consensus de 2002, les posologies retenues pour ces traitements sont respectivement 2g trois fois par jour et 3mg/kg par jour administrés en trois fois. Le poids moyen des patients inclus dans les essais TRAFFIC et TRANSPORT (64 Kg) a été pris en compte pour la détermination des doses administrées aboutissant à la consommation de 75mg par jour.

Les recommandations préconisent une durée d’antibiothérapie de 15 jours en cas d’EP. De plus, d’après le bilan des données de 2013 du registre français de la mucoviscidose, la durée moyenne d’une cure d’antibiotique était de 15,3 jours (68 861/4501).

Les coûts de traitement sont issus de la base publique des médicaments. Les coûts liés à l’acte infirmier ont été déterminés : pour chaque administration IV ils occasionnent 1.5 AMI (acte médico-infirmier), 1 MAU (majoration acte unique) et 1 IFD (indemnité forfaitaire de déplacement). Aucune indemnité kilométrique n’a été imputée au coût sur la base du rapport 2015 de la cour des comptes.

Au total, le coût journalier de traitement des EP à domicile s’élève à 87.74 € et le coût moyen obtenu pour la prise en charge d’une EP est de 2 688 €.

Tableau 25. Détail du calcul du coût de traitement des EP par antibiothérapie IV à domicile

<table>
<thead>
<tr>
<th>Traitement antibiotique IV</th>
<th>Coût unitaire</th>
<th>N d’unités/jour</th>
<th>Coût journalier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Céftazidime 2000mg (Générique)</td>
<td>16.43 €</td>
<td>3</td>
<td>49.29 €</td>
</tr>
<tr>
<td>Nébcine 75 mg</td>
<td>4.24 €</td>
<td>3</td>
<td>12.72 €</td>
</tr>
<tr>
<td>Administration (soins infirmiers)</td>
<td>8.58 €</td>
<td>3</td>
<td>25.73 €</td>
</tr>
<tr>
<td>Total (par jour)</td>
<td>87.74 €</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

27 GHMV11 04M071, 04M072, 04M073, 04M074 et 04M07T
Tableau 26. Détermination du coût de prise en charge des exacerbations pulmonaires dans le modèle

<table>
<thead>
<tr>
<th>Paramètres</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Part des patients hospitalisés</td>
<td>25,58%</td>
</tr>
<tr>
<td>Coût d'hospitalisation</td>
<td>6 425 €</td>
</tr>
<tr>
<td>Part des patients traités à domicile avec antibiothérapie IV</td>
<td>71,21%</td>
</tr>
<tr>
<td>Durée du traitement antibiotique IV</td>
<td>15 jours</td>
</tr>
<tr>
<td>Coût journalier du traitement antibiotique</td>
<td>87.74 €</td>
</tr>
<tr>
<td>Coût d'une chambre implantable</td>
<td>21 €</td>
</tr>
<tr>
<td>Coût de prise en charge moyen d'une EP</td>
<td>2 688 €</td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l'industriel

Mesure, valorisation et calcul du coût de la procédure et du suivi des transplantations pulmonaires

Le coût de la procédure de transplantation et le coût annuel des séjours hospitaliers post-transplantation stratifié par année jusqu'à la troisième année de suivi sont issu de l'ENC.

Le coût de la procédure est celui rapporté dans l'ENC pour les GHM « Transplantations pulmonaires » en tenant compte de la part de chaque niveau de sévérité (actualisés 2015). Le coût du suivi hospitalier est obtenu par le produit de la fréquence annuelle des séjours de suivi pour chaque année (ou période) suivant la transplantation et la moyenne des coûts rapportés dans l'ENC pour les GHM « Suivis de greffe pulmonaire » en tenant compte de la part de chaque niveau de sévérité (actualisés pour 2015). Dans le modèle, le nombre de séjours de suivi après greffe pulmonaire a été estimé à 10 séjours de suivi la première année suivant la greffe, 5 séjours les deux années suivantes (2 et 3) et 2 séjours annuels pour les années qui suivent.

Tableau 27. Coût de transplantation pulmonaire et coût annuel des séjours hospitaliers de suivi des greffes

<table>
<thead>
<tr>
<th>Effet Indésirable</th>
<th>Nombre de séjours/an</th>
<th>Coût</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procédure</td>
<td>NA</td>
<td>77 299 €</td>
</tr>
<tr>
<td>Première année</td>
<td>10</td>
<td>13 124 €</td>
</tr>
<tr>
<td>Deuxième année</td>
<td>5</td>
<td>6 562 €</td>
</tr>
<tr>
<td>Troisième année</td>
<td>5</td>
<td>6 562 €</td>
</tr>
<tr>
<td>Années 4 – 10</td>
<td>2</td>
<td>2 625 €</td>
</tr>
<tr>
<td>Années >10</td>
<td>2</td>
<td>2 625 €</td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l'industriel

Le coût journalier des traitements suivis (prophylaxie anti-infectieuse, immunosuppression, prévention ostéoporose et dyslipidémies) a été pris en compte. Ces traitements ont été déterminés sur la base d'une présentation du Pr Schuller (CHU Strasbourg) aux 2èmes assises
de transplantation pulmonaire de la région Est (2009)30. Aucun coût n’a été considéré pour le traitement inducteur de l’immunosuppression (anti-IL2) : en effet, ces traitements ne font pas l’objet d’une inscription sur la liste en sus et ne disposent pas d’AMM dans la transplantation pulmonaire.

Les coûts de traitement sont issus de la base publique des médicaments. Les traitements étant disponibles sous forme orale, aucun coût d’acte infirmier n’a été considéré. Le coût journalier de traitement a été déterminé sur la base d’une ordonnance type et le détail du coût est fourni.

Tableau 28. Détail du coût de traitement post-transplantation

<table>
<thead>
<tr>
<th>Traitement</th>
<th>Coût unitaire</th>
<th>Posologie (par jour)</th>
<th>Coût journalier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prograf 1 mg</td>
<td>2.09 €</td>
<td>2</td>
<td>4.18 €</td>
</tr>
<tr>
<td>Prograf 0.5 mg</td>
<td>1.18 €</td>
<td>2</td>
<td>2.35 €</td>
</tr>
<tr>
<td>Cellcept 5000 mg</td>
<td>1.14 €</td>
<td>4</td>
<td>4.54 €</td>
</tr>
<tr>
<td>Solupred 20 mg</td>
<td>0.24 €</td>
<td>1</td>
<td>0.24 €</td>
</tr>
<tr>
<td>Rovalcyte 450 mg</td>
<td>24.03 €</td>
<td>1</td>
<td>24.03 €</td>
</tr>
<tr>
<td>Vfend 200 mg</td>
<td>37.80 €</td>
<td>2</td>
<td>75.60 €</td>
</tr>
<tr>
<td>Bactrim 800 mg</td>
<td>0.15 €</td>
<td>3/7</td>
<td>0.07 €</td>
</tr>
<tr>
<td>Vasten 20 mg</td>
<td>0.49 €</td>
<td>1</td>
<td>0.49 €</td>
</tr>
<tr>
<td>Tenormine 50 mg</td>
<td>0.13 €</td>
<td>2</td>
<td>0.27 €</td>
</tr>
<tr>
<td>Cacit D3 500 mg</td>
<td>0.12 €</td>
<td>1</td>
<td>0.12 €</td>
</tr>
<tr>
<td>Fosamax 70</td>
<td>4.14 €</td>
<td>1/7</td>
<td>0.59 €</td>
</tr>
<tr>
<td>Total (par jour)</td>
<td></td>
<td></td>
<td>112.47 €</td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l’industriel

Des coûts de consultation et de suivi biologique réalisé en ambulatoire ont également été ajoutés. Le nombre de visites de suivi hors séjour hospitalier a été extrait du livret d’informations aux patients inscrits sur la liste d’attente pour une transplantation pulmonaire du Centre de ressources et de compétences de la mucoviscidose de l’hôpital Foch à Suresnes.

Il en découle un rythme de suivi tel que :

- 1ère année : 18 visites de suivi, dont séjours hospitaliers,
- Au-delà : 4 visites annuelles dont séjours hospitaliers.

Des consultations ambulatoires ont été ajoutées sur avis de l’expert consulté :

- 1ère année : 8 consultations + 10 hospitalisations,
- 2e et 3e année : 0 consultations + 5 hospitalisations,
- Au-delà : 2 consultations + 2 hospitalisations.

Ces consultations, valorisées au tarif conventionné de 28.00€, sont accompagnées d’examens biologiques, déterminés selon une présentation du Dr Boussaud (Hôpital Européen Georges-Pompidou, Paris) et valorisés selon la TNB et la tarification en vigueur du coefficient B.

30 Schuller A. Nouveaux agents immunosuppresseurs et immunothérapie d’induction en greffe pulmonaire. 2009

Tableau 29. Détail du coût de suivi post-transplantation

<table>
<thead>
<tr>
<th>Poste</th>
<th>Coût par consultation de suivi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consultation spécialiste</td>
<td>28.00 €</td>
</tr>
<tr>
<td>Dosage tacrolimus & mycophenolate mofetil</td>
<td>18.90 €</td>
</tr>
<tr>
<td>Dosage prophylaxie anti-infectieuse</td>
<td>18.90 €*</td>
</tr>
<tr>
<td>NFS + Plaquettes</td>
<td>7.83 €</td>
</tr>
<tr>
<td>Ionogramme</td>
<td>7.29 €</td>
</tr>
<tr>
<td>Urémie + Créatinine</td>
<td>2.16 €</td>
</tr>
<tr>
<td>Ionogramme urinaire</td>
<td>3.24 €</td>
</tr>
<tr>
<td>Cholestérol</td>
<td>7.29 €</td>
</tr>
<tr>
<td>HBA1C</td>
<td>8.10 €</td>
</tr>
<tr>
<td>Radiographie thoracique</td>
<td>21.28 €</td>
</tr>
<tr>
<td>Fibroscopie bronchique</td>
<td>96.00 €</td>
</tr>
<tr>
<td>EFR</td>
<td>28.80 €</td>
</tr>
<tr>
<td>Total</td>
<td>247.79 €</td>
</tr>
</tbody>
</table>

*Dosage de trois prophylaxies anti-infectieuses (2 antibiotiques et 1 antifongique)

Source : rapport technique fourni par l’industriel

Le coût correspondant au nombre de consultations de suivi par année de suivi et le coût de traitement ont été pris en compte dans les coûts de suivi post-greffe pour déterminer les coûts annuels de suivi suivants :

Tableau 30. Coût total de suivi post-greffe, par année de suivi

<table>
<thead>
<tr>
<th>Années de suivi</th>
<th>Coût total de suivi post-greffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56 654.08 €</td>
</tr>
<tr>
<td>2 et 3</td>
<td>47 642.54 €</td>
</tr>
<tr>
<td>>3</td>
<td>44 008.62 €</td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l’industriel

► Mesure, valorisation et calcul du coût de décès

Du fait de l’importance du suivi que requièrent ces patients et de l’importance du coût associé, en particulier dans les stades les plus avancés de la maladie, aucun coût spécifique n’est associé aux décès, ces derniers étant supposés compris dans les coûts de prise en charge.

Cette approche est par ailleurs justifiée par la durée annuelle des cycles retenue pour le modèle après deux ans de simulation, qui implique l’association d’un coût de suivi annuel à la dernière année de vie, la durée précise de celle-ci n’étant pas modélisée. Ceci aboutit à un équilibre réparti des dépenses entre les coûts de suivi non-réalisés du fait du décès du patient au cours du cycle et les coûts de décès, non-inclus dans l’analyse, évitant une forme de double comptage.

► Résultats de l’analyse de coût

L’industriel ne présente pas de tableau récapitulatif par postes des coûts introduits dans le modèle.
4.4.2 Analyse critique de l’évaluation des coûts

► Coûts pris en compte

Mesure, valorisation et calcul des coûts liés au traitement

Le coût total du traitement comprend le coût d’acquisition, le coût de suivi ophtalmologique et de la fonction hépatique. La justification des coûts non pris en compte est explicite (par exemple le choix de ne pas avoir pris en considération une surveillance supplémentaire de façon systématique des patients ayant un VEMS<40% en début de traitement).

Le coût TTC des traitements n’est pas précisé.

La façon dont ont été prises en compte l’observance et les interruptions de traitements dans le modèle soulève les remarques suivantes.

Selon le rapport technique, « le taux mensuel d’interruption est défini dans le modèle de sorte que le taux d’interruption constaté dans les essais TRAFFIC et TRANSPORT soit reproduit après 24 semaines de traitement » ; il est ensuite spécifié qu’après 24 semaines de traitement, les patients ne peuvent plus interrompre leur traitement sauf en cas de transplantation pulmonaire ce qui est incohérent avec la phrase précédente. A priori, l’hypothèse d’absence d’arrêt du traitement après 24 semaines a bien été retenue dans le modèle. Il était cependant raisonnable de simuler que certains patients arrêtent leur traitement après 24 semaines, même si ce taux est incertain. En outre, dans le modèle, les effets de lumacaftor/ivacaftor sur l’évolution du VEMS et la survenue des EP sont pris en compte dans les résultats y compris pour les patients qui arrêtent leur traitement avant 24 semaines (évaluation en intention de traiter), ce qui est potentiellement en faveur du produit évalué et ce, d’autant plus, que les coûts sont impactés à la baisse en cas d’arrêt du traitement.

Il est précisé que le taux d’observance appliqué dans le modèle au coût d’acquisition du traitement est conforme à celui des essais. Le taux d’observance de 81% retenu dans le modèle est celui constaté par l’industriel dans le cadre des études de suivi d’ivacaftor (Kalydeco®). Le taux d’observance appliqué n’est donc pas conforme à celui des résultats des essais cliniques de 96,5%. Dans la pratique, le taux d’observance peut être plus faible que dans les essais mais ce taux devrait alors impacter à la fois les coûts et les effets du traitement. Il y a donc une incohérence concernant le taux d’observance retenu dans le modèle qui impacte uniquement les coûts alors que l’effet traitement est calculé en fonction du taux d’observance de 96,5% retenu dans les essais cliniques.

Le modèle prend en compte pour les deux bras de traitement, le coût de prise en charge d’un événement indésirable ponctuel ne requérant pas une hospitalisation. Le risque de sous-estimation du coût des événements indésirables graves notamment ceux requérant une hospitalisation a été questionné.

Pour les auteurs, il existe une difficulté méthodologique à séparer les événements indésirables liés au traitement standard de la maladie de ceux liés au traitement par lumacaftor/ivacaftor.

Les coûts de prise en charge des événements indésirables graves de l’étude de Chevreul et al. (2015) sont intégrés aux coûts de prise en charge standard de la maladie pour les deux bras de traitement (SoC seul et SoC + lumacaftor/ivacaftor). Dans cette étude, la méthodologie retenue ne permet pas d’identifier ces coûts en tant que tels, notamment ceux liés aux hospitalisations.

Le modèle intègre, par ailleurs, à part entière, le coût lié aux exacerbations pulmonaires dont une part d’hospitalisations, pour les deux bras de traitement.

Compte tenu que la fréquence des événements indésirables graves (requérant ou prolongeant une hospitalisation) ou non, est globalement plus élevée chez les patients traités par le SoC que ceux traités par lumacaftor/ivacaftor, il apparaît plus approprié méthodologiquement de poser l’hypothèse que les coûts liés aux événements indésirables
Les consommations de soins des six derniers mois – médicaments, dispositifs médicaux, consultations, analyses et autres examens, hospitalisations et transports – l’impact de la maladie sur l’emploi et la présence d’aidants ont été renseignées de façon rétrospective au moyen d’un questionnaire anonyme en ligne.

Bien qu’il soit spécifié que la disponibilité de réponses aux questions portant sur les consommations de ressources était suffisante, les biais potentiel liés à cette méthode de recueil « bottom up » peuvent être importants (oubli des recours aux soins de façon précise sur les 6 derniers mois, questionnaires renseignés par les aidants dans certains cas, etc.).

Les caractéristiques de la population interrogées appellent les remarques suivantes :

- Patients atteints de mucoviscidose et non uniquement patients âgés de 12 ans et plus homozygotes pour la mutation F508del du gène CFTR correspondant à la population modélisée ;
- Représentativité de l’échantillon d’étude avec la population simulée dans le modèle en termes d’âge et de sévérité de la maladie non discuté.
- Coût de prise en charge estimé selon une perspective collective (tous payeurs) mais coût lié au temps des aidants et à l’assistance à domicile par un professionnel de santé non retenus alors qu’ils peuvent être considérés comme liés directement à la production des interventions évaluées notamment concernant l’observance et qu’ils étaient disponibles dans l’étude de Chevreul (2015).

La méthode de valorisation des coûts est renseignée et les dépassements d’honoraires des consultations sont pris en compte.

Le coût de prise en charge annuel moyen retenu dans le modèle correspond à celui de la population adulte de l’étude de Chevreul (2015) soit **23 968€** (coûts 2012) qui était significativement plus élevé que celui chez les enfants de 13 157€ ce qui s’explique principalement par un recours aux médicaments, examens et hospitalisations plus important. Le coût moyen de l’ALD mucoviscidose rapporté par l’assurance maladie en 2012 était de **22 454€** (coûts 2009).

Selon les auteurs du rapport, les données publiées par l’Assurance maladie font l’objet d’une certaine hétérogénéité au regard de l’âge des patients et ne permettent pas de déterminer le coût moyen de prise en charge au titre de l’ALD18 pour les adultes uniquement (l’effectifs des patients adultes par région n’étant pas disponible). Le coût moyen par patient de l’ALD18 pour les 20-39 ans pour la plupart est en moyenne de 28 500€ ; ce coût correspondant à la prise en charge globale de ces patients y compris les coûts éventuels associés à la transplantation. Par conséquent, le choix du coût de prise en charge déterminé pour les patients adultes par Chevreul et al. dans le modèle n’apparaît pas surestimé par rapport au coût moyen déterminé par l’assurance maladie qui pourrait être supérieur pour les adultes uniquement ; le choix effectué dans le modèle apparaît donc comme défavorable au produit évalué.
La stratification des coûts de prise en charge de l’étude de Chevreul et al. selon l’atteinte pulmonaire (valeurs du VEMS≥70%, entre 40 et 70% et <70%) afin de refléter les états de santé du modèle a été effectuée à partir d’une étude italienne de 2013 (Colombo et al., 2013). Les auteurs du rapport fournissent peu de détails sur la méthode utilisée, les limites, l’incertitude qui en découle de même que la transposabilité de données italiennes à la population française ne sont pas discutés.

Les limites et biais potentiels de la méthode employée pour la stratification des coûts de l’étude française par niveau de VEMS en utilisant l’étude italienne de Colombo ne sont pas suffisamment décrits dans le rapport ni suite à l’échange technique pour évaluer l’incertitude liée à la transposabilité des écarts de coût de prise en charge de la progression de la pathologie en Italie par rapport à la France (du fait des caractéristiques spécifiques de la population de l’étude italienne et en particulier en termes de représentativité des catégories d’atteinte pulmonaire chez les patients inclus, du système de santé, de la méthodologie qui peuvent entraîner des différences dans l’évaluation des coûts).

Enfin, le coût correspondant au nombre moyen d’exacerbations pulmonaires par patient et par an a été soustrait pour éviter un double comptage, le coût des EP étant intégré séparément dans le modèle. La fréquence des EP a été estimée à partir des données du registre français. Il n’est pas spécifié dans la publication de Chevreul si des patients transplantés faisaient partie de l’échantillon d’étude ; dans l’affirmative, les coûts liés au suivi de la greffe auraient dû être soustraits également.

Au total, si les coûts liés aux états de santé ont été estimé en fonction des données disponibles, il existe une incertitude liée :

- au fait que les coûts de prise en charge reposent sur des données de la population française recueillies chez l’ensemble de la population de patients atteints de mucoviscidose et peu seulement chez les patients homozygotes pour la mutation F508del du gène CFTR ce qui n’est pas discuté
- au manque de transparence dans les méthodes utilisées pour mesurer et calculer les coûts ;
- au fait que les coûts stratifiés par niveau de VEMS auraient dû tenir compte de l’effet âge en cohérence avec le modèle.

Mesure, valorisation et calcul des coûts de prise en charge des exacerbations pulmonaires

La mesure des coûts de prise en charge des exacerbations pulmonaires est conforme aux hypothèses retenues dans le modèle et n’appelle pas de remarques particulières. La valorisation des coûts a été effectuée selon l’ENC des GHM « Infections et inflammations respiratoires pour les patients de plus de 17 ans », en tenant compte de la part de chaque niveau de sévérité (niveau 1 à 4) dont le détail est renseigné.

Les traitements antibiotiques retenus pour le calcul du coût journalier de traitement (cefazidime et tobramycine) résultent de l’avis unique d’un seul expert ce qui peut être contestable.

Mesure, valorisation et calcul du coût de la procédure et du suivi des transplantations pulmonaires

Le coût de la procédure de transplantation a été estimé à 77 299€ selon le coût rapporté dans l’ENC pour les GHM « transplantations pulmonaires » en tenant compte de la part de chaque niveau de sévérité.

Le coût lié aux séjours de suivi a également été estimé à partir du coût rapporté dans l’ENC pour les GHM « suivis de greffe pulmonaire » en tenant compte de la part de chaque niveau de sévérité.
de sévérité mais la source des données pour estimer le nombre de séjours de suivi par an n'est pas renseignée.

L'estimation des coûts de traitement repose sur une ordonnance type délivrée a priori en sortie d'hospitalisation dont la généralisation au suivi des patients transplantés repose sur l'avis d'un expert. Il semblerait en outre, que certains traitements dont le coût est assez élevé ne soient pas des traitements au long court ce qui contribue à augmenter artificiellement le coût du suivi post-greffe du fait d'un coût de traitement journalier excessif.

L'estimation des coûts des consultations, du suivi biologique et des examens n'est pas claire et associée aux séjours hospitaliers déjà comptabilisés dans les coûts liés aux séjours de suivi post-greffe. Elle repose de plus sur une présentation dont les références n'ont pas été fournies.

Enfin, le détail du coût total annuel de suivi post-greffe par poste de coût n'est pas présenté. Au total, on constate un certain nombre d'inexactitudes et d'incohérences dans l'estimation des coûts liés à la prise en charge des transplantations pulmonaires.

Mesure, valorisation et calcul du coût de décès

Le choix de ne pas avoir pris en compte un coût associé au décès est argumenté et recevable en raison du risque de double comptage.

Résultats de l'analyse de coût

Les résultats de l'analyse de coût ne sont pas présentés selon la même logique que les postes de coût déterminés dans l'analyse détaillée relative au coût de prise en charge stratifié selon l'atteinte pulmonaire. Cette présentation porte à confusion. En outre, l'industriel ne présente pas de tableau récapitulatif pour chaque intervention comparée des coûts totaux pour l'ensemble des postes de soins en cohérence avec les données introduites dans le modèle Excel.

Il existe une incertitude sur la méthode d'estimation de la plupart des coûts introduits dans le modèle dont le périmètre n'est pas limité aux patients âgés de 12 ans et plus homozygotes pour la mutation F508del du gène CFTR. Cependant, compte tenu du fait que le coût de traitement de lumacaftor/ivacaftor représente plus de ▭% du coût total de prise en charge, l'impact associé est limité.
4.5 Présentation des résultats et analyses de sensibilité

4.5.1 Présentation par les auteurs

Résultats de l’étude médico-économique

Les résultats de l’étude médico-économique sont présentés sur un horizon temporel à vie entière et selon 3 scénarios définis en fonction des hypothèses de projection de l’évolution du VEMS pour lumacaftor/ivacaftor + SoC au-delà de 24 semaines :

- **Scénario 1 - Optimiste** (Tableau 31) : à partir de la 24ème semaine, la diminution annuelle moyenne du VEMS chez les patients traités par SoC+lumacaftor/ivacaftor a été estimée à un taux constant de 0.68 points de pourcentage (IC 95% : -1.58% - 0.16%) jusqu’à la fin de l’horizon temporel.

- **Scénario 2 – Intermédiaire** (Tableau 32) : il est supposé que le VEMS sous SoC+lumacaftor/ivacaftor reste stable de la 24ème semaine jusqu’à la semaine 48, puis diminue à un taux réduit de 53% par rapport à celui du SoC (c'est-à-dire : -1,01% pour les moins de 18 ans, -0,90% pour les 18-24 ans et -0,68% pour les 25 ans et plus).

- **Scénario 3 – Pessimiste** : il est supposé que le VEMS sous SoC+lumacaftor/ivacaftor reste stable de la 24ème semaine jusqu’à la semaine 48, puis diminue selon le même coefficient que le SoC (c'est-à-dire : -2,34% pour les moins de 18 ans, -1,92% pour les 18-24 ans et -1,45% pour les 25 ans et plus).

La HAS a effectué l’analyse pour le scénario 3 telle que demandée lors de l’échange technique et présente dans cette section les résultats correspondants.

Remarque préalable : lorsque qu’il est fait référence au RDCR dans cette section, il faut comprendre le RDCR de SoC + lumacaftor/ivacaftor versus le SoC seul, exprimé en euros pour une unité de QALY gagnée.
Tableau 31. Résultats du scénario 1 (Optimiste)

<table>
<thead>
<tr>
<th>Age</th>
<th>Coût total</th>
<th>Survie</th>
<th>QALYs</th>
<th>RDCR (€/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Luma/Iva SoC</td>
<td>Luma/Iva SoC</td>
<td>Luma/Iva SoC</td>
<td></td>
</tr>
<tr>
<td>12 – 17</td>
<td>3 072 841€</td>
<td>448 568€</td>
<td>35,37</td>
<td>20,08</td>
</tr>
<tr>
<td>18 – 24</td>
<td>1 738 686€</td>
<td>254 543€</td>
<td>16,90</td>
<td>10,85</td>
</tr>
<tr>
<td>25 – 34</td>
<td>837 472€</td>
<td>114 976€</td>
<td>6,90</td>
<td>4,82</td>
</tr>
<tr>
<td>35+</td>
<td>144 410€</td>
<td>21 350€</td>
<td>0,98</td>
<td>0,79</td>
</tr>
<tr>
<td>Global</td>
<td>1 522 436€</td>
<td>220 730€</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR : Non renseigné
Source : rapport technique fourni par l’industriel

Tableau 32. Résultats du scénario 2 (Intermédiaire)

<table>
<thead>
<tr>
<th>Age</th>
<th>Coût total</th>
<th>Survie</th>
<th>QALYs</th>
<th>RDCR (€/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Luma/Iva SoC</td>
<td>Luma/Iva SoC</td>
<td>Luma/Iva SoC</td>
<td></td>
</tr>
<tr>
<td>12 – 17</td>
<td>2 993 693€</td>
<td>449 313€</td>
<td>33,86</td>
<td>20,53</td>
</tr>
<tr>
<td>18 – 24</td>
<td>1 732 046€</td>
<td>254 133€</td>
<td>16,80</td>
<td>11,07</td>
</tr>
<tr>
<td>25 – 34</td>
<td>842 272€</td>
<td>116 202€</td>
<td>6,96</td>
<td>4,94</td>
</tr>
<tr>
<td>35+</td>
<td>144 342€</td>
<td>21 433€</td>
<td>0,98</td>
<td>0,80</td>
</tr>
<tr>
<td>Global</td>
<td>1 501 967€</td>
<td>220 793€</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR : Non renseigné
Source : rapport technique fourni par l’industriel

Tableau 33. Résultats du scénario 3 (Pessimiste)

<table>
<thead>
<tr>
<th>Age</th>
<th>Coût total</th>
<th>Survie</th>
<th>QALYs</th>
<th>RDCR (€/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Luma/Iva SoC</td>
<td>Luma/Iva SoC</td>
<td>Luma/Iva SoC</td>
<td></td>
</tr>
<tr>
<td>12 – 17</td>
<td>2 348 260€</td>
<td>456 168€</td>
<td>23,78</td>
<td>20,24</td>
</tr>
<tr>
<td>18 – 24</td>
<td>1 488 889€</td>
<td>260 457€</td>
<td>13,43</td>
<td>11,11</td>
</tr>
<tr>
<td>25 – 34</td>
<td>720 804€</td>
<td>112 553€</td>
<td>5,68</td>
<td>4,58</td>
</tr>
<tr>
<td>35+</td>
<td>134 067€</td>
<td>20 450€</td>
<td>0,90</td>
<td>0,75</td>
</tr>
<tr>
<td>Global</td>
<td>1 259 227€</td>
<td>226 017€</td>
<td>11,72</td>
<td>9,81</td>
</tr>
</tbody>
</table>

Source : analyse effectuée par la HAS
Les coûts détaillés sont présentés pour les trois scénarios dans les tableaux ci-dessous. Ils montrent que le différentiel de coût entre les deux traitements est principalement dû au coût d’acquisition de lumacaftor/ivacaftor qui représente plus de 97% du surcoût total quel que soit le scénario.

Tableau 34. Coûts du scénario 1 (coûts moyens par patient actualisés)

<table>
<thead>
<tr>
<th></th>
<th>SoC + lumacaftor/ivacaftor</th>
<th>SoC</th>
<th>Différentiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coût total</td>
<td>€ 1 522 436</td>
<td>€ 220 730</td>
<td>€ 1 301 706</td>
</tr>
<tr>
<td>Coût de lumacaftor</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>(Orkambí®)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coût PeC EP</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Coût PeC hospitalière</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>PeC ambulatoire</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Autres coûts de PeC</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Transplantation</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>PeC effets indésirables</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Tests hépatiques</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Coûts de suivi</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
</tbody>
</table>

SoC : Standard of Care, PeC : Prise en charge, EP : Exacerbations pulmonaires

Source : rapport technique fourni par l’industriel

Tableau 35 Coûts du scénario 2 (coûts moyens par patient actualisés)

<table>
<thead>
<tr>
<th></th>
<th>SoC + lumacaftor/ivacaftor</th>
<th>SoC seul</th>
<th>Différentiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coût total</td>
<td>€ 1 501 967</td>
<td>€ 220 793</td>
<td>€ 1 281 174</td>
</tr>
<tr>
<td>Coût de lumacaftor</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>(Orkambí®)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coût PeC EP</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Coût PeC hospitalière</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>PeC ambulatoire</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Autres coûts de PeC</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Transplantation</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>PeC effets indésirables</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Tests hépatiques</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Coûts de suivi</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
</tbody>
</table>

SoC : Standard of Care PeC : Prise en charge EP : Exacerbations pulmonaires

Source : rapport technique fourni par l’industriel
Tableau 36. Coûts du scénario 3 (coûts moyens par patient actualisés)

<table>
<thead>
<tr>
<th></th>
<th>SoC + lumacaftor/ivacaftor</th>
<th>SoC</th>
<th>Différentiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coût total</td>
<td>1 259 227€</td>
<td>226 017€</td>
<td>1 033 210€</td>
</tr>
<tr>
<td>Coût de lumacaftor/ivacaftor (Orkambi®)</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Coût PeC EP</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Coût PeC hospitalière</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>PeC ambulatoire</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Autres coûts de PeC</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Transplantation</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>PeC effets indésirables</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Tests hépatiques</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
<tr>
<td>Coûts de suivi</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
<td>€ XXXXX</td>
</tr>
</tbody>
</table>

SoC : Standard of Care, PeC : Prise en charge, EP : Exacerbations pulmonaires
Source : analyse effectuée par la HAS

Les tableaux suivants présentent les résultats relatifs à la médiane de survie des patients du modèle (Tableau 37 et Tableau 39) et à l’évolution de leur état de santé (Tableau 38 et Tableau 40).

Ces résultats sont montrés pour les trois scénarios mais ne sont pas différenciés en fonction des classes d’âge.
Tableau 37. Résultats sur la médiane de survie en fonction des scénarios 1 et 2

<table>
<thead>
<tr>
<th></th>
<th>Scénario 1</th>
<th>Scénario 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Optimiste)</td>
<td>(Intermédiaire)</td>
</tr>
<tr>
<td>SoC + luma/iva</td>
<td>34,85</td>
<td>34,77</td>
</tr>
<tr>
<td>SoC seul</td>
<td>30,59</td>
<td>30,79</td>
</tr>
<tr>
<td>Médiane de survie (années)</td>
<td>4,27</td>
<td>3,98</td>
</tr>
<tr>
<td>Augmentation de la médiane de survie (années)</td>
<td>6,60</td>
<td>5,93</td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l’industriel

Tableau 38. Résultats relatifs à l’évolution de la maladie et à l’impact des traitements sur l’état de santé des patients, en fonction des scénarios 1 et 2

<table>
<thead>
<tr>
<th></th>
<th>Scénario 1</th>
<th>Scénario 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Optimiste)</td>
<td>(Intermédiaire)</td>
</tr>
<tr>
<td>Comparateur</td>
<td>SoC + luma/iva</td>
<td>SoC seul</td>
</tr>
<tr>
<td>Evolution du VEMS</td>
<td>-8,37</td>
<td>-14,98</td>
</tr>
<tr>
<td>Résultat différentiel</td>
<td>6,60</td>
<td>5,93</td>
</tr>
<tr>
<td>Fréquence annuelle des EP</td>
<td>0,42</td>
<td>1,13</td>
</tr>
<tr>
<td>Résultat différentiel</td>
<td>-0,72</td>
<td>-0,69</td>
</tr>
<tr>
<td>Part des patients avec une transplantation pulmonaire</td>
<td>0,6%</td>
<td>2,8%</td>
</tr>
<tr>
<td>Résultat différentiel</td>
<td>-2,1%</td>
<td>-1,8%</td>
</tr>
<tr>
<td></td>
<td>0,7%</td>
<td>2,5%</td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l’industriel

Tableau 39. Résultats de la médiane de survie en fonction du scénario 3

<table>
<thead>
<tr>
<th></th>
<th>Scénario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Pessimiste)</td>
</tr>
<tr>
<td></td>
<td>SoC + luma/iva</td>
</tr>
<tr>
<td>Médiane de survie (années)</td>
<td>33,06</td>
</tr>
<tr>
<td></td>
<td>SoC seul</td>
</tr>
<tr>
<td></td>
<td>30,79</td>
</tr>
<tr>
<td>Augmentation de la médiane de survie (années)</td>
<td>2,27</td>
</tr>
</tbody>
</table>

Source : analyse effectuée par la HAS
Tableau 40. Résultats relatifs à l’évolution de la maladie et à l’impact des traitements sur l’état de santé des patients pour le scénario 3

<table>
<thead>
<tr>
<th></th>
<th>SoC + luma/iva</th>
<th>SoC seul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparateur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolution du VEMS</td>
<td>-14,72</td>
<td>-14,57</td>
</tr>
<tr>
<td></td>
<td>-0,16</td>
<td></td>
</tr>
<tr>
<td>Fréquence annuelle des EP</td>
<td>0,58</td>
<td>1,12</td>
</tr>
<tr>
<td></td>
<td>-0,53</td>
<td></td>
</tr>
<tr>
<td>Part des patients avec une transplantation pulmonaire</td>
<td>2,8%</td>
<td>2,5%</td>
</tr>
<tr>
<td></td>
<td>0,4%</td>
<td></td>
</tr>
</tbody>
</table>

Source : analyse effectuée par la HAS

Prise en compte de l’incertitude et analyse de sensibilité

NB: l’analyse de l’incertitude n’est pas présentée pour le scénario 3 compte tenu des résultats erronés fournis par l’industriel

a) Incertitude liée aux choix structurants de l’évaluation

Horizon temporel - Analyse de référence : vie entière

Les auteurs ont testé l’impact de l’horizon temporel dans le scénario 1 (c.à.d. le scénario optimiste) sur la population totale et différenciée par groupe d’âge en utilisant des horizons temporels de 5 ans, 10 ans et 20 ans (Tableau 41, Tableau 42 et Tableau 43, respectivement).

Selon les auteurs, les résultats de ces analyses sont parmi les plus susceptibles d’être différenciés selon l’âge des patients à l’entrée du modèle. En effet, en fonction de l’âge, à un horizon temporel de 5 ans, le RDCR peut tripler (c.à.d. 1 499 382€ pour les plus de 35 ans vs 4 543 341€ pour les 12-17 ans).
Tableau 41. Résultats du scénario 1 à un horizon temporel de 5 ans par catégorie d’âge

<table>
<thead>
<tr>
<th>Age</th>
<th>Coût total</th>
<th>Survie</th>
<th>QALYs</th>
<th>RDCR (€/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SoC + luma/iva</td>
<td>SoC</td>
<td>SoC + luma/iva</td>
<td>SoC</td>
</tr>
<tr>
<td>Global</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>12 – 17</td>
<td>662 943€</td>
<td>113 444€</td>
<td>4,85</td>
<td>4,76</td>
</tr>
<tr>
<td>18 – 24</td>
<td>617 092€</td>
<td>109 395€</td>
<td>4,38</td>
<td>4,18</td>
</tr>
<tr>
<td>25 – 34</td>
<td>478 930€</td>
<td>77 711€</td>
<td>3,34</td>
<td>3,01</td>
</tr>
<tr>
<td>35+</td>
<td>348 408€</td>
<td>55 989€</td>
<td>2,41</td>
<td>2,14</td>
</tr>
</tbody>
</table>

NR : Non renseigné
Source : rapport technique fourni par l'industriel

Tableau 42. Résultats du scénario 1 à un horizon temporel de 10 ans par catégorie d’âge

<table>
<thead>
<tr>
<th>Age</th>
<th>Coût total</th>
<th>Survie</th>
<th>QALYs</th>
<th>RDCR (€/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SoC + luma/iva</td>
<td>SoC</td>
<td>SoC + luma/iva</td>
<td>SoC</td>
</tr>
<tr>
<td>Global</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>12 – 17</td>
<td>1 180 669€</td>
<td>212 077€</td>
<td>9,38</td>
<td>8,98</td>
</tr>
<tr>
<td>18 – 24</td>
<td>1 016 473€</td>
<td>177 631€</td>
<td>7,78</td>
<td>7,01</td>
</tr>
<tr>
<td>25 – 34</td>
<td>680 463€</td>
<td>102 708€</td>
<td>5,05</td>
<td>4,15</td>
</tr>
<tr>
<td>35+</td>
<td>473 314€</td>
<td>71 152€</td>
<td>3,47</td>
<td>2,83</td>
</tr>
</tbody>
</table>

NR : Non renseigné
Source : rapport technique fourni par l'industriel
Tableau 43. Résultats du scénario 1 à un horizon temporel de 20 ans par catégorie d’âge

<table>
<thead>
<tr>
<th>Age</th>
<th>Coût total</th>
<th>Survie</th>
<th>QALYs</th>
<th>RDCR (€/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SoC + luma/iva</td>
<td>SoC</td>
<td>SoC + luma/iva</td>
<td>SoC</td>
</tr>
<tr>
<td>Global</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>12 – 17</td>
<td>1 887 227€</td>
<td>347 215€</td>
<td>17,41</td>
<td>15,32</td>
</tr>
<tr>
<td>18 – 24</td>
<td>1 429 548€</td>
<td>234 890€</td>
<td>12,33</td>
<td>9,83</td>
</tr>
<tr>
<td>25 – 34</td>
<td>802 410€</td>
<td>113 873€</td>
<td>6,38</td>
<td>4,74</td>
</tr>
<tr>
<td>35+</td>
<td>546 388€</td>
<td>77 805€</td>
<td>4,27</td>
<td>3,19</td>
</tr>
</tbody>
</table>

NR : Non renseigné
Source : rapport technique fourni par l’industriel

Taux d’actualisation – Analyse de référence : 4% avant 30 ans, puis 2%

Les auteurs ont testé l’impact du taux d’actualisation dans le scénario 1 (c.à.d. le scénario optimiste) avec un taux de 0%, 3,5% et 6% par an pour les coûts et résultats (Tableau 44).

Tableau 44 Résultats du scénario 1 avec un taux d’actualisation de 0%, 3,5% et 6%

<table>
<thead>
<tr>
<th>Scénario</th>
<th>Description</th>
<th>Coût différentiel</th>
<th>QALY différentiel</th>
<th>RDCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taux d’actualisation</td>
<td>Pas d’actualisation</td>
<td>2 174 587€</td>
<td>4,76</td>
<td>456 623€</td>
</tr>
<tr>
<td>3.5% par an (coûts et résultats)</td>
<td>1 249 531€</td>
<td>1,96</td>
<td>638 645€</td>
<td></td>
</tr>
<tr>
<td>6% par an (coûts et résultats)</td>
<td>958 304€</td>
<td>1,22</td>
<td>783 763€</td>
<td></td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l’industriel

b) Incertitude liée aux hypothèses et sources de données

Les auteurs ont testé l’impact des principales hypothèses de modélisation sur le scénario 1 (c.à.d. le scénario optimiste) pour l’ensemble de la population tout âge confondu (Tableau 47).

Les caractéristiques de la cohorte

La microsimulation est fondée sur les données individuelles des patients des essais TRAFFIC et TRANSPORT, dont les caractéristiques moyennes diffèrent de celles des patients inclus dans le registre français de la mucoviscidose.

Une analyse en scénario a été réalisée pour évaluer la sensibilité du résultat aux caractéristiques moyennes de la population. Les auteurs ont simulé une cohorte fictive par tirage aléatoire au sein des patients des essais TRAFFIC et TRANSPORT de sorte à reproduire au mieux l’âge et le VEMS moyen observés dans le registre français tout en conservant la corrélation entre l’âge et le VEMS observé dans les essais de phase III. Le sexe des patients est déterminé en générant un nombre aléatoire sur une distribution uniforme comparée à la proportion d’hommes dans la cohorte (si inférieur homme, sinon femme). Les autres caractéristiques étaient similaires pour tous les patients et égales aux moyennes observées dans les essais TRAFFIC et TRANSPORT.

Cette analyse a un faible impact sur le RDCR (de 574 390€ à 578 097€, soit +0,65%).
La modélisation de la diminution du VEMS

Il existe une forte incertitude autour de la modélisation de l'évolution du VEMS en général et en particulier au-delà de 24 semaines. Cette incertitude est accentuée par les variations en fonction de l'âge du patient. Sur la base du scénario 1 (optimiste), les auteurs ont testé 2 paramètres (d'une façon univariée) impactant l'évolution du VEMS, à savoir :

- L'effet traitement de lumacaftor/ivacaftor sur le VEMS : les patients traités par SoC + lumacaftor/ivacaftor ont une dynamique de diminution de leur VEMS :
 - Réduite de 53% par rapport aux patients traités par SoC seul sur la base des données de l'étude de Sawicki et al. [cette analyse est donc équivalente au scénario 2 de l'analyse de référence (scénario intermédiaire)]
 - 20% supérieure à la diminution avant 24 semaines (1.2×-0.68 = -0.816 par an)
 - 20% inférieure à la diminution avant 24 semaines (0.8×-0.68 = -0.544 par an)
- La diminution du VEMS pour le SoC seul : les patients traités par SoC seul ont une dynamique de diminution de leur VEMS fondée sur :
 - Sawicki et al. : -1.73 quel que soit l'âge du patient
 - De Boer et al. : -2.34 pour les moins de 18 ans et -4.35 au-delà
 - Une fonction logistique dérivée de Liou et al.

Une baisse de 20% de la diminution du VEMS avant 24 semaines associée à lumacaftor/ivacaftor entraîne une hausse d'environ 12% du RDCR. L'utilisation de l'étude de Sawicki et al. et de De Boer et al. pour modéliser la diminution du VEMS sous SoC seul a peu d'impact sur le RDCR (+3,5% et -0,9% respectivement sur le RDCR)

L'utilisation de la fonction logistique pour modéliser l'évolution du VEMS associé au SoC seul entraîne une hausse d'environ 33% du RDCR du scénario 1.

L'ensemble des résultats est présenté dans le Tableau 47.

Impact sur les exacerbations pulmonaires

Dans l'analyse de référence, les auteurs font l'hypothèse d'un impact indépendant de l'effet traitement de lumacaftor/ivacaftor sur les EP et le VEMS. Telle que modélisée, cette hypothèse pose problème car elle conduit à un double comptage des EP sous lumacaftor/ivacaftor : une première fois sur le VEMS qui se répercute sur les EP, puis directement sur les EP via le risque relatif (RR) de SoC + lumacaftor/ivacaftor vs. SoC seul (c.à.d. 0.442).

Les auteurs ont réalisé une analyse en scénario en fixant la valeur du RR des patients traités par lumacaftor/ivacaftor à 1.

En supposant un RR égal 1, le RDCR augmente de plus de 15%.

Taux d'interruption du traitement lumacaftor/ivacaftor

Afin de tester l'hypothèse d'absence d'interruption de traitement au-delà de 24 semaines, les auteurs ont effectué des analyses en supposant un taux annuel d'interruption de :

- 4.2% jusqu'à la fin de l'horizon temporel : cette valeur correspond au nombre de patients (43 patients) dans les essais TRAFFIC et TRANSPORT ayant présenté un événement indésirable ayant conduit à l'arrêt du traitement ;
- 1.9% jusqu'à 15 ans (soit un taux d’interruption de traitement de 30% sur 15 ans).

Un taux annuel d'interruption de traitement de 4.2% au lieu de 0%, conduit à une augmentation du RDCR d'environ 5%.
Observance

L’observance est le paramètre qui a le plus d’impact sur le RDCR. Dans l’analyse de référence, les auteurs supposaient une observance de 81% sur la base des données de l’essai clinique pour ivacaftor (Kalydeco®). Dans les analyses en scénario, les auteurs testent l’impact de l’observance en fixant celle-ci à 100% et à 96,5%, valeur observée dans les essais TRAFFIC et TRANSPORT. Lorsque l’observance passe de 81% à 100% (soit une hausse d’environ 24%), le RDCR augmente de 23%.

L’observance a également été testée par groupe d’âge dans le scénario 1 (scénario optimiste). Les résultats avec une observance à 96,5% et 100% sont présentés dans le Tableau 45 et le Tableau 46, respectivement.

Tableau 45 Résultats du scénario 1 basée sur les taux d’observance observés pendant les essais TRAFFIC et TRANSPORT par catégorie d’âge (96,5%)

<table>
<thead>
<tr>
<th>Age</th>
<th>Coût total</th>
<th>Survie</th>
<th>QALYs</th>
<th>RDCR (€/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Luma/Iva</td>
<td>SoC</td>
<td>Luma/Iva</td>
<td>SoC</td>
</tr>
<tr>
<td>Global</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>12 – 17</td>
<td>2 818 049€</td>
<td>448 568€</td>
<td>35,37</td>
<td>20,08</td>
</tr>
<tr>
<td>18 – 24</td>
<td>1 593 708€</td>
<td>254 543€</td>
<td>16,90</td>
<td>10,85</td>
</tr>
<tr>
<td>25 – 34</td>
<td>767 362€</td>
<td>114 976€</td>
<td>6,90</td>
<td>4,82</td>
</tr>
<tr>
<td>35+</td>
<td>519 816€</td>
<td>78 461€</td>
<td>4,58</td>
<td>3,23</td>
</tr>
</tbody>
</table>

NR : Non renseigné

Source : rapport technique fourni par l’industriel

Tableau 46 Résultats du scénario 1 basée sur une observance de 100% par catégorie d’âge

<table>
<thead>
<tr>
<th>Age</th>
<th>Coût total</th>
<th>Survie</th>
<th>QALYs</th>
<th>RDCR (€/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Luma/Iva</td>
<td>SoC</td>
<td>Luma/Iva</td>
<td>SoC</td>
</tr>
<tr>
<td>Global</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>12 – 17</td>
<td>3 670 501</td>
<td>448 568€</td>
<td>35,37</td>
<td>20,08</td>
</tr>
<tr>
<td>18 – 24</td>
<td>2 078 759</td>
<td>254 543€</td>
<td>16,90</td>
<td>10,85</td>
</tr>
<tr>
<td>25 – 34</td>
<td>1 001 926</td>
<td>114 976€</td>
<td>6,90</td>
<td>4,82</td>
</tr>
<tr>
<td>35+</td>
<td>678 548</td>
<td>78 461€</td>
<td>4,58</td>
<td>3,23</td>
</tr>
</tbody>
</table>

NR : Non renseigné

Source : rapport technique fourni par l’industriel

Utilité

Les auteurs ont testé 2 sources différentes pour les valeurs d’utilité :
- Utilités associées aux niveaux de l’atteinte pulmonaire de Chevreul et al.
 - VEMS faible (≥ 70%) : 0,786
 - VEMS modéré (entre 49% et 60%) : 0,733
 - VEMS sévère (< 40%) : 0,673
- Désutilités associées aux EP de Bradley et al. : -0,0127 associé aux EP

Ces analyses n’impactent que faiblement le RDCR.

Coût de lumacaftor/ivacaftor (Orkambi®)

Les auteurs ont testé l’impact d’une variation du prix de lumacaftor/ivacaftor, avec les hypothèses suivantes :
- 50% du prix revendiqué (soit un coût annuel de €)
• 90% du prix revendiqué (soit un coût annuel de : €)
• 95% du prix revendiqué (soit un coût annuel de : €)
• 110% du prix revendiqué (soit un coût annuel de : €)

Pour un coût de lumacaftor/ivacaftor réduit de 50%, le RDCR est diminué de 49% (égal à 295 076€).

Le Tableau 47 résume l’ensemble des résultats de chaque analyse en scénario et leur impact sur le RDCR (à partir du scénario 1).

Tableau 47. Résultats des analyses en scénario sur les principales hypothèses de modélisation

<table>
<thead>
<tr>
<th>Scénario</th>
<th>Description</th>
<th>Coût différentiel</th>
<th>QALY différentiel</th>
<th>RDCR</th>
<th>Variation RDCR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td></td>
<td>1 301 706€</td>
<td>2,27</td>
<td>574 390€</td>
<td></td>
</tr>
<tr>
<td>Caractéristiques de la cohorte</td>
<td>Cohorte patients du registre français</td>
<td>1 744 923€</td>
<td>3,02</td>
<td>578 097€</td>
<td>+ 0,6%</td>
</tr>
<tr>
<td>Effet du traitement sur la diminution du VEMS</td>
<td>Effet du traitement d’après Sawicki et al. (-1.73% vs. SoC seulement)</td>
<td>1 281 174€</td>
<td>2,06</td>
<td>622 131€</td>
<td>+ 8,3%</td>
</tr>
<tr>
<td></td>
<td>Effet de lumacaftor/ivacaftor diminué de 20% (-0.816)</td>
<td>1 262 472€</td>
<td>1,96</td>
<td>642 708€</td>
<td>+ 11,9%</td>
</tr>
<tr>
<td></td>
<td>Effet de lumacaftor/ivacaftor augmenté de 20% (-0.544)</td>
<td>1 359 555€</td>
<td>2,60</td>
<td>523 896€</td>
<td>- 8,8%</td>
</tr>
<tr>
<td>Diminution du VEMS hors traitement lumacaftor/ivacaftor</td>
<td>D’après l’étude de Sawicki et al.</td>
<td>1 281 286€</td>
<td>2,15</td>
<td>594 640€</td>
<td>+ 3,5%</td>
</tr>
<tr>
<td></td>
<td>D’après l’étude de de Boer et al.</td>
<td>1 183 648€</td>
<td>2,07</td>
<td>573 033€</td>
<td>- 0,2%</td>
</tr>
<tr>
<td></td>
<td>Modélisation de la diminution du VEMS selon une équation logistique basée sur les données de Liou et al.</td>
<td>1 289 152€</td>
<td>1,69</td>
<td>761 115€</td>
<td>+ 32,5%</td>
</tr>
<tr>
<td>Impact de lumacaftor/ivacaftor sur les EP indépendamment du VEMS</td>
<td>Pas d’effet (RR d’EP = 1)</td>
<td>1 206 056€</td>
<td>1,81</td>
<td>665 011 €</td>
<td>+ 15,8%</td>
</tr>
<tr>
<td>Taux d’interruption</td>
<td>Taux d’interruption annuel de 1.9% passées 15 semaines</td>
<td>1 104 267€</td>
<td>1,91</td>
<td>578 231€</td>
<td>+ 0,7%</td>
</tr>
</tbody>
</table>
n du traitement

| Taux annuel d’interruption de traitement 4.2% | 862 833€ | 1,43 | 601 666€ | + 4,7% |

Observance

| Observance observée dans les essais | 1 543 338€ | 2,27 | 681 012€ | + 18,6% |
| Observance de 100% | 1 598 666€ | 2,27 | 705 426€ | + 22,8% |

Utilités

| Utilités associées aux exacerbations pulmonaires de Bradley et al. | 1 301 706€ | 2,26 | 575 481€ | + 0,2% |
| Utilités associées aux niveaux de l’atteinte pulmonaire de Chevreul et al. | 1 301 706€ | 2,22 | 586 900€ | + 2,2% |

Coût de lumacaftor/ivacaftor (Orkambi®)

50% du prix revendiqué	668 712€	2,27	295 076€	-48,6%
90% du prix revendiqué	1 175 107€	2,27	518 527€	-9,7%
95% du prix revendiqué	1 238 407€	2,27	546 459€	-4,9%
110% du prix revendiqué	1 428 305€	2,27	630 253€	+9,7%

Source: rapport technique fourni par l’industriel

c) Incertitude liée à la variabilité des variables du modèle

Analyse de sensibilité déterministe (ASD)

Le Tableau 48 ci-dessous reprend les analyses de sensibilité déterministes réalisées sur les valeurs des données entrées dans le modèle.
Les résultats des analyses de sensibilité déterministes sont représentés pour chacun des deux scénarios recevables sous la forme de diagrammes de Tornado (Figure 8 et Figure 9). Les paramètres influent le plus sur le RDCR de lumacaftor/ivacaftor dans les deux scénarios sont l’observance au traitement sous lumacaftor/ivacaftor et le coût de lumacaftor/ivacaftor (d’Orkambi®).

Dans le scénario 2 (intermédiaire), la variation de l’effet du traitement lumacaftor/ivacaftor sur le VEMS a plus d’impact sur le RDCR que dans le scénario 1 (optimiste). En effet, dans le scénario 1, cette variable est classée au 8ème rang parmi les variables qui ont le plus d’impact sur le RDCR (contre le 3ème rang pour le scénario 2).
Figure 8 Diagramme de Tornado des résultats de l’ASD pour le scénario 1 (optimiste)
Figure 9 Diagramme de Tornado des résultats de l’ASD pour le scénario 2 (intermédiaire)
Analyses de sensibilité probabilistes (ASP)

Pour chacun des paramètres testés, l’industriel a présenté la valeur de référence du paramètre, la loi de distribution ainsi que les paramètres de la loi. Les distributions associées aux données utilisées pour réaliser les ASP dans le modèle et les paramètres qui leurs sont attribués sont détaillés dans le Tableau 49.

Tableau 49. Distributions associées aux données utilisées pour réaliser les ASP dans le modèle et les paramètres

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Distribution</th>
<th>Valeur moyenne</th>
<th>Erreur-type</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation de risque de Liou</td>
<td>Normale</td>
<td></td>
<td></td>
<td>Liou et al.[3]</td>
</tr>
<tr>
<td>Utilité par atteinte du VEMS</td>
<td>Beta</td>
<td>0.803</td>
<td>0.026</td>
<td>Whiting et al.[7]</td>
</tr>
<tr>
<td>• ≥ 70%</td>
<td></td>
<td>0.749</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>• 40-69%</td>
<td></td>
<td>0.688</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>Augmentation du VEMS avec lumacaftor/ivacaftor</td>
<td>Normale</td>
<td>2.8</td>
<td>0.411</td>
<td>TRAFFIC & TRANSPORT</td>
</tr>
<tr>
<td>(bornée à 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augmentation du poids en z-score avec lumacaftor/ivacaftor</td>
<td>Normale</td>
<td>0.08</td>
<td>0.031</td>
<td>TRAFFIC & TRANSPORT</td>
</tr>
<tr>
<td>(bornée à 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risque relatif d’EP avec lumacaftor/ivacaftor</td>
<td>Normale</td>
<td>0.442</td>
<td>0.004</td>
<td>TRAFFIC & TRANSPORT</td>
</tr>
<tr>
<td>(bornée à 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diminution annuelle du VEMS après 24 semaines, patients traités par SoC seul</td>
<td>Normale</td>
<td>- 2.34%</td>
<td>0.47</td>
<td>Hypothèse : SE = 20% de la moyenne</td>
</tr>
<tr>
<td>• < 18 ans</td>
<td></td>
<td>- 1.92%</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>• 19 – 24 ans</td>
<td></td>
<td>- 1.45%</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>• > 25 ans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diminution annuelle du VEMS après 24 semaines, patients traités par lumacaftor/ivacaftor par rapport aux patients traités par SoC seul</td>
<td>Beta</td>
<td>70.9%</td>
<td>0.0229</td>
<td>SE déduits des IC95% déterminés au cours d’analyses post-hoc des essais TRAFFIC et TRANSPORT</td>
</tr>
<tr>
<td>• < 18 ans</td>
<td></td>
<td>64.6%</td>
<td>0.0229</td>
<td></td>
</tr>
<tr>
<td>• 19 – 24 ans</td>
<td></td>
<td>53.1%</td>
<td>0.0229</td>
<td></td>
</tr>
<tr>
<td>• > 25 ans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramètre α de l’équation prédisant la fréquence des EP</td>
<td>Normale</td>
<td>8.594</td>
<td>1.719</td>
<td>Hypothèse : SE = 20% de la moyenne</td>
</tr>
<tr>
<td>• patients < 18 ans</td>
<td></td>
<td>3.789</td>
<td>0.758</td>
<td></td>
</tr>
<tr>
<td>• patients ≥ 18 ans</td>
<td></td>
<td>-0.0256</td>
<td>0.013</td>
<td>Solem et al.[54]</td>
</tr>
</tbody>
</table>
Tableau 50. Paramètres associés aux coûts de prise en charge de la pathologie dans les ASP

<table>
<thead>
<tr>
<th></th>
<th>Moyenne</th>
<th>SE</th>
<th>Moyenne</th>
<th>SE</th>
<th>Moyenne</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospitalisations</td>
<td>31 902 €</td>
<td>4 239.89 €</td>
<td>13 438 €</td>
<td>1 873.79 €</td>
<td>4 442 €</td>
<td>720.87 €</td>
</tr>
<tr>
<td>Soins de ville</td>
<td>5 938 €</td>
<td>461.42 €</td>
<td>4 480 €</td>
<td>293.22 €</td>
<td>3 777 €</td>
<td>272.19 €</td>
</tr>
<tr>
<td>Traitements</td>
<td>13 327. €</td>
<td>1382.30 €</td>
<td>9 456 €</td>
<td>985.82 €</td>
<td>6 451 €</td>
<td>677.94 €</td>
</tr>
</tbody>
</table>

Source : rapport technique fourni par l'industriel

A partir des plans de coûts efficacité et les courbes d’acceptabilité pour les scénarios 1 et 2 avec 500 simulations pour chaque ASP, les auteurs concluent que :
- Dans le scénario 1, lumacaftor/ivacaftor a une probabilité de 90% d’être la stratégie la plus coût-efficace à partir d’une disposition à payer de 632 000 €/QALY.
- Dans le scénario 2, lumacaftor/ivacaftor a une probabilité de 90% d’être la stratégie la plus coût-efficace à partir d’une disposition à payer de 684 000 €/QALY.
Pour les deux scénarios, le nuage de point est intégralement compris dans le quadrant supérieur droit du plan coût-efficacité ; ou en d'autres termes, le traitement SoC + lumacaftor/ivacaftor est plus efficace et plus cher que le traitement du SOC seul dans l'ensemble des simulations. Il peut être aussi noté que dans l'ensemble des 500 simulations des ASP pour les deux scénarios, il n'y a aucun cas où le coût incrémental SoC+lumacaftor/ivacaftor comparé au SoC seul soit inférieur à un million d'euros. Les résultats de l'analyse de sensibilité probabiliste pour le scénario 1 et 2 sont représentés respectivement sur les Figure 10 et Figure 11.
Figure 10. Résultats de l’ASP sur le plan coût-efficacité pour le scénario 1
Figure 11. Résultats de l’ASP sur le plan coût-efficacité pour le scénario 2
4.5.2 Analyse critique de la présentation des résultats et de l’analyse de sensibilité

Résultats de l’étude économique

Pour le scénario 3 (pessimiste), les résultats présentés par l’industriel ne sont pas valables car erronés. En effet, la valeur utilisée dans le modèle pour l’évolution du VEMS correspond à -0.82 quel que soit l’âge du patient (c.à.d. -0.68×1.2 = -0.82, avec -0.68 étant la valeur du scénario), au lieu d’utiliser les valeurs appliquées pour le SoC seul comme cela avait été demandé par la HAS durant l’échange technique. Les résultats présentés par l’industriel dans son rapport technique (c.à.d. un impact mineur sur les RDCR pour une variation majeure de l’évolution du VEMS) semblaient en effet paradoxaux avec l’effet même du produit ; à savoir une amélioration du VEMS qui doit se traduire par une diminution du risque de complications et de décès, et donc du RDCR.

Les résultats du scénario 3 de l’industriel ne sont donc pas présentés ni commentés dans cet avis. Seules sont présentées les analyses de la HAS utilisant les hypothèses d’évolution du VEMS pour lumacaftor/ivacaftor telles qu’initiallement formulées durant l’échange technique pour le scénario 3 (pessimiste) ; à savoir une cinétique d’évolution identique entre les 2 bras comparateurs au-delà de 48 semaines en fonction de l’âge du patient (<18 ans = -2.34 ; 18-24 ans = -1.92 ; ≥ 25 ans = -1.45)). A titre indicatif, la Figure 12 montre la dynamique de diminution du VEMS en valeur absolue au-delà de 24 semaines en fonction de l’âge pour les 3 scénarios (avec le scénario 3 corrigé), ainsi qu’en utilisant la fonction logistique sur base des hypothèses du scénario 2 (c.à.d. la diminution du VEMS pour lumacaftor/ivacaftor +SoC est 53% moins importante que pour le SoC seul).

Contrairement aux conclusions de l’industriel qui montraient peu d’impacts entre les trois scénarios sur le RDCR, ces résultats montrent bien une très nette influence du VEMS sur le RDCR en fonction des hypothèses de projection à long terme (au global, le RDCR passe de 574 390€ dans le scénario 1 à 1 288 625€ dans le scénario 3, soit plus du double, voir Tableau 51). Pour rappel, aucune donnée au-delà de 48 semaines sur l’évolution du VEMS pour les patients sous lumacaftor/ivacaftor n’est actuellement disponible. L’industriel fait l’hypothèse d’une diminution du VEMS constante peu importe l’âge pour lumacaftor/ivacaftor bien inférieure à celle observée pour le traitement classique (SoC). Les auteurs supposent donc que l’effet traitement de lumacaftor/ivacaftor perdure tout au long de l’horizon temporel et ce sur l’ensemble des patients sans distinction de sévérité de la pathologie. Cette hypothèse semble favoriser le produit en particulier pour les patients âgés de plus de 35 ans qui sont majoritairement des patients avec un profil moins sévère de la maladie (voir Section 4.2.2).

De plus, cette présentation des résultats montre l’impact important de l’analyse en fonction des différentes classes d’âge sur les RDCR et en fonction des scénarios d’extrapolation du VEMS. Dans les scénarios 1 et 2, plus l’âge des patients du modèle augmente, plus les RDCR sont élevés, or cet effet est inversé dans le scénario 3. En moyenne, entre les patients de plus de 35 ans et les patients de 12-17 ans, le RDCR augmenta de 84% dans le scénario 1, de 65% dans le scénario 2, alors qu’il diminue de 27% dans le scénario 3. L’impact de l’âge à l’initiation de la simulation combiné avec les hypothèses d’extrapolation du VMS sont donc majeures sur le RDCR. L’effet inversé pour le scénario 3 peut s’expliquer par un différentiel total de coût moins important entre les 2 bras ; les patients dans les groupes d’âges élevés restent moins longtemps dans le modèle et donc le coût incrémental global est plus faible.

Il peut aussi être noté qu’une erreur a été constatée dans les résultats des coûts associés aux exacerbations pulmonaires pour tous les scénarios mais qui avait un impact à la hausse sur le RDCR (donc en défaveur du produit).
Enfin, à partir du scénario 2 (intermédiaire), la HAS a calculé les RDCR par QALY par groupe d’âge en utilisant la fonction logistique pour extrapoler la dynamique de diminution du VEMS pour le SoC seul et pour lumacaftor/ivacaftor + SoC. Les résultats sont présentés dans le Tableau 51.
Figure 12. Dynamique de diminution du VEMS en valeur absolue par âge au-delà de 24 semaines en fonction des hypothèses d’extrapolation du VEMS pour le SoC seul et pour lumacaftor/ivacaftor + SoC.
Tableau 51. RDCR par QALY gagnée dans les 3 scénarios d’évolution du VEMS (avec le scénario 3 corrigé) ainsi qu’en utilisant la fonction logistique

<table>
<thead>
<tr>
<th>RDCR/QALY</th>
<th>12 – 17</th>
<th>18 – 24</th>
<th>25 – 34</th>
<th>35+</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 (Optimiste)</td>
<td>514 563€</td>
<td>620 980€</td>
<td>694 708€</td>
<td>946 615€</td>
<td>574 390€</td>
</tr>
<tr>
<td>S2 (Intermédiaire)</td>
<td>571 771€</td>
<td>656 850€</td>
<td>726 070€</td>
<td>945 454€</td>
<td>622 131€</td>
</tr>
<tr>
<td>S3 Corrigé (Pessimiste)</td>
<td>1 472 267€</td>
<td>1 241 103€</td>
<td>1 012 428€</td>
<td>1 069 844€</td>
<td>1 286 625€</td>
</tr>
<tr>
<td>Fonction logistique</td>
<td>550 514€</td>
<td>674 989€</td>
<td>803 903€</td>
<td>994 561€</td>
<td>761 115€</td>
</tr>
</tbody>
</table>

De manière générale, les résultats de santé – évolution du VEMS, fréquence annuelle des exacerbations pulmonaires, part des patients avec une transplantation pulmonaire – en fonction des groupes d’âge manquent à l’analyse et à l’interprétation des résultats.

Enfin, la survie modélisée sur le Figure 13 montre que la survie des patients traités par SoC seul semble être sous-estimée dans la modélisation par rapport à la survie des patients du registre français, et ce jusqu’à l’âge de 38 ans en moyenne. Au-delà de 38 ans, la survie sous SoC seul semble cette fois-ci surestimée par rapport à celle des patients du registre. Les données du registre utilisées ici pour extrapoler la mortalité sont censurées (la médiane de survie est non atteinte) et ne peuvent être utilisées directement pour valider le modèle. Cependant, elles peuvent être susceptibles de révéler une certaine incertitude quant aux résultats de survie modélisés.

Figure 13. Survie modélisée (ici, présentation du scénario 2)

► Analyse de l’incertitude

Les analyses de sensibilité en scénario ont été effectuées uniquement par rapport au scénario 1 qui correspond au scénario d’évolution de la valeur du VEMS optimiste, et sans
tenir compte des classes d’âge définies dans l’analyse de référence, rendant l’exploration de l’incertitude incomplète.

a) Incertitude liée aux choix structurants de l’évaluation

Les auteurs ont testé l’impact des principaux choix structurants uniquement à partir des résultats du scénario 1 (optimiste). Leur analyse n’appelle pas de remarques particulières.

b) Incertitude liée aux hypothèses et sources de données

De façon globale, l’analyse de l’incertitude liée aux hypothèses et sources de données a été correctement conduite par les auteurs sur le fondement des résultats du scénario 1 ; il peut être cependant noté que :

- Les hypothèses effectuées par les auteurs dans le modèle ont un impact significatif sur le RDCR, et dans l’ensemble des cas, ces hypothèses sont en faveur du produit.
- Seules des analyses univariées ont été présentées par les auteurs, il aurait été intéressant de tester plusieurs paramètres simultanément (analyses multivariées), comme par exemple en testant ensemble l’impact de l’effet traitement de lumacaftor/ivacaftor sur l’évolution du VEMS et la variation de la diminution du VEMS pour le SoC.
- Sur base d’une étude par Sawiki et al., les auteurs supposent que les patients traités par lumacaftor/ivacaftor ont une dynamique de dégradation du VEMS moins rapide que celle des patients traités avec le SoC seul (réduction de 53% de la diminution du VEMS). Il peut être noté que les participants à la publication Sawiki et al. sont des membres du groupe Vertex: « Medical writing and editorial support were provided by Erin D. Gleason, Ph.D., and Dhrupad Patel, Pharm.D., who are employees of Vertex Pharmaceuticals Incorporated and may own stock or stock options in that company. »

c) Incertitude liée à la variabilité des variables du modèle

Analyse de sensibilité déterministe (ASD)

La méthodologie utilisée pour les ASD semble globalement correcte. Il peut cependant être noté que les analyses de sensibilité déterministes ont été effectuées selon les 3 scénarios mais sur la population globale ; les classes d’âge définies pour l’analyse de référence n’ont pas été prises en compte. Les résultats pour le scénario 3 ne sont pas valides car erronés.

Les bornes utilisées pour les ASD ne sont pas discutées par les auteurs. De manière générale, les auteurs utilisent des bornes de plus ou moins 20% autour de la valeur de référence ou de plus ou moins 2 fois l’écart type de l’analyse de référence. Ces valeurs semblent acceptables dans le cadre d’analyses de sensibilité déterministes.

Analyse de sensibilité probabiliste (ASP)

La méthodologie utilisée pour les ASP est globalement correcte, bien que le tableau relatif aux données utilisées pour réaliser les ASP n’ait pas été actualisé par les auteurs suite à l’échange technique. Si les analyses ont été effectuées à partir des 3 scénarios, elles sont
incomplètes car non effectuées selon les classes d’âge définies l’analyse de référence. Enfin, les résultats du scénario 3 sont invalides car erronés.

Au total, l’évaluation médico-économique du lumacaftor/ivacaftor s’est fondée sur 3 scénarios définis en fonction de l’hypothèse de projection de l’évolution de la valeur du VEMS pour lumacaftor/ivacaftor au-delà de la 24ème semaine.

Seul le scénario 1 (optimiste) peut être retenu en analyse de référence en raison de l’incomplétude des analyses de sensibilité effectuées pour les deux autres scénarios : les analyses de sensibilité déterministes et probabilistes présentées par l’industriel pour le scénario 3 sont erronées et le scénario 2 n’a pas fait l’objet d’analyses de sensibilité en scénario.

Pour ce scénario, lumacaftor/ivacaftor est associé à un RDCR de 574 390€ par QALY gagné sur l’ensemble de la population concernée par l’indication. Le RDCR augmente avec l’âge des patients traités ; il est de 946 615€ pour les patients âgés de 35 ans et plus. Les analyses de sensibilité déterministes et probabilistes mises en œuvre pour ce scénario ne permettent cependant pas d’explorer l’incertitude autour des résultats en fonction des classes d’âge.

Les résultats montrent en outre que le différentiel de coût entre les deux stratégies évaluées est principalement au coût d’acquisition de lumacaftor/ivacaftor qui représente plus de 80% du coût total associé à la prise en charge de la pathologie, quel que soit le scénario.

Par ailleurs, les analyses de sensibilité déterministes et en scénario montrent que les paramètres qui ont le plus d’influence sur le RDCR sont :

- Le prix revendiqué pour lumacaftor/ivacaftor (le RDCR diminue d’environ 50% lorsque le prix du produit diminue de 50% ; une diminution du prix de lumacaftor/ivacaftor se traduit par une réduction proportionnellement équivalente du RDCR)
- L’horizon temporel (RDCR = 1 509 889€/QALY à 10 ans dans le scénario optimiste)
- La modélisation de diminution de la valeur du VEMS (notamment l’utilisation de la fonction logistique pour modéliser l’évolution du VEMS associée au SOC seul ; RDCR = 761 115€/QALY).
- L’observance (avec une observance de 100% le RDCR = 705 426€/QALY dans le scénario optimiste)

4.6 Commentaires généraux

Il aurait été pertinent de réaliser une analyse d’impact budgétaire compte tenu du prix du produit revendiqué et de la part du coût d’acquisition du traitement dans le coût de prise en charge global de la maladie.
5. Annexe 4 – Echange avec l’industriel

La liste de questions techniques ci-dessous a été adressée à l’industriel.

Analyse médico-économique de lumacaftor/ivacaftor (Orkambi®) dans le traitement de la mucoviscidose chez les patients homozygotes pour la mutation F508del sur le gène CFTR et âgés de 12 et plus

Echange technique

Les éléments en gras doivent être traités en priorité. Lorsque des modifications de la modélisation sont demandées, une mise à jour de l’ensemble des analyses doit être fournie (y compris les analyses de sensibilité dont les scénarios initialement proposés).

Les abréviations suivantes sont utilisées dans ce document :

<table>
<thead>
<tr>
<th>Abréviation</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Cepacia</td>
<td>Burkholderia cepacia</td>
</tr>
<tr>
<td>CFFPR</td>
<td>Cystic Fibrosis Foundation Patient Registry</td>
</tr>
<tr>
<td>EP</td>
<td>Exacerbation pulmonaire</td>
</tr>
<tr>
<td>FdC</td>
<td>Feuille de calcul</td>
</tr>
<tr>
<td>IMC</td>
<td>Indice de Masse Corporelle</td>
</tr>
<tr>
<td>ITT</td>
<td>Intention de Traiter</td>
</tr>
<tr>
<td>NR</td>
<td>Non reporté</td>
</tr>
<tr>
<td>QALY</td>
<td>Quality Adjusted Life Year</td>
</tr>
<tr>
<td>RDCR</td>
<td>Rapport Différentiel Coûts-Résultats</td>
</tr>
<tr>
<td>S. aureus</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>SoC</td>
<td>Standard of Care, Prise en charge standard</td>
</tr>
<tr>
<td>VEMS</td>
<td>Volume expiratoire maximum seconde</td>
</tr>
</tbody>
</table>

Analyse de référence

Il est attendu que soit réalisée une nouvelle analyse de référence, fondée sur 3 scénarios d’évaluation de la dynamique de diminution du VEMS, stratifiée par groupe d’âge, telle que définie aux questions 12 et 16 et en prenant en compte l’ensemble des modifications demandées dans les questions suivantes.

Il est également attendu une mise à jour de l’ensemble des analyses de sensibilité fournies dans la première version du rapport technique, incluant les nouvelles analyses de sensibilité demandées dans ce document.
Choix structurants de l’évaluation

Les stratégies comparées

1. Concernant le comparateur Standard of Care (SoC), il est attendu une présentation exhaustive du contenu de la prise en charge symptomatique standard en termes de médicaments, dispositifs médicaux, et autres types de mesures liées à la prise en charge symptomatique ainsi qu’une justification dans le contexte français.

Modélisation

La population simulée

La population de patients à l’entrée du modèle est générée sur la base des caractéristiques des patients inclus dans les essais TRAFFIC et TRANSPORT.31 Une analyse en scénario a été effectuée en générant une cohorte reproduisant les caractéristiques de la population suivie par le registre français de la mucoviscidose (les données utilisées dans l’analyse sont présentées dans le Tableau 52 ci-dessous).

Tableau 52. Comparaison des caractéristiques des populations utilisées dans le modèle4, issues du registre français 201332 et du CFFPR 199336

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Années)</td>
<td>25,53</td>
<td>23,04</td>
<td>18,8</td>
<td>17,58</td>
</tr>
<tr>
<td>VEMS (%)</td>
<td>60,59</td>
<td>71,85</td>
<td>77,3</td>
<td>67,7</td>
</tr>
<tr>
<td>Sexe (%)</td>
<td>49,4</td>
<td>45,0</td>
<td>47,0</td>
<td>47,0</td>
</tr>
<tr>
<td>Poids en z-score pour l’âge</td>
<td>-0,41</td>
<td>-0,4</td>
<td>-0,4</td>
<td>-0,85</td>
</tr>
<tr>
<td>IMC</td>
<td>21,17</td>
<td>21,18</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Diabète (%)</td>
<td>Données par groupe d’âge issues du registre 2013</td>
<td>2,15</td>
<td>6,10</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus (%)</td>
<td>56,6</td>
<td>30,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burkholderia cepacia (%)</td>
<td>2,0</td>
<td>3,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fonction pancréatique exocrine suffisante (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5,3</td>
</tr>
<tr>
<td>Fréquence annuelle des exacerbations pulmonaires (5 max)</td>
<td>0</td>
<td>0,83</td>
<td>0,67*</td>
<td>1,1</td>
</tr>
</tbody>
</table>

* Valeur utilisée dans le modèle : 0,83

2. Pouvez-vous préciser comment ont été dérivées les valeurs moyennes des paramètres présentés dans le Tableau 21 p.60 du rapport (par exemple, la valeur moyenne du VEMS rapportée est de 77.3% versus 78.1% dans le registre de 2013 - Bilan des données

32) ? Ces données concernent-elles uniquement les patients avec la mutation F508del et âgés de 12 ans et plus ? Si oui, pouvez-vous préciser les sources ?

3. Pouvez-vous préciser la méthodologie utilisée pour sélectionner les patients des études TRAFFIC et TRANSPORT afin de reproduire les caractéristiques moyennes des patients suivis dans le registre français pour votre analyse en scénario « Génération d’une cohorte reproduisant les caractéristiques de la population suivie par le registre français de la mucoviscidose » (cf. Tableau 52 du présent document) ?

4. Il semble y avoir une incohérence concernant la valeur de la fréquence annuelle des exacerbations pulmonaires (EP) entre le modèle (feuille de calcul [FdC] « Mortality » cellule « I54 » = 0,83) et le rapport d’efficience (tableau 21 p.60 = 0,67, « Chez 6 275 patients, 2 011 (32%) ont reçu au moins une antibiothérapie pour un total de 4 511 cures. De fait, une valeur de 0,67 est appliquée dans le modèle »). Cette valeur de 0,83 est utilisée pour définir la fréquence des EP dans la population simulée en analyse de scénario pour chacun des individus. Merci de justifier cet écart de valeurs, ou de rectifier le modèle ou le rapport, et de mettre à jour les résultats des analyses le cas échéant.

5. Pouvez-vous clarifier le rationnel pour ne pas utiliser les données individuelles des essais cliniques concernant l’incidence du diabète et des infections (S. aureus, B cepacia) dans le modèle ? Le cas échéant, pouvez-vous fournir un comparatif des données poolées issues des essais par groupe d’âge versus les données du registre 2013 ?

6. L’efficacité d’Orkambi® se traduit par une survie globale plus favorable comparée au SoC sur base de la fonction de survie de Liou et al. Il est donc supposé que la population étudiée est comparable à celle de l’étude américaine menée par Liou et al. Au vu des données du Tableau 52 du présent document, il semblerait cependant que les populations française et américaine diffèrent, et ce en particulier concernant le taux de diabète, le poids en z-score, les infections et la fonction pancréatique. Pouvez-vous discuter l’impact de ces différences sur la justesse de l’application de cette équation de risque à la population française, et le cas échéant mettre à jour le modèle et/ou le rapport d’efficience ?

7. Un travail similaire est attendu afin de justifier l’application de l’équation de Whiting (population anglaise) à la population française.

La modélisation des données de survie

- **Tirage aléatoire**

A la page 61 du rapport, il est précisé : « Le décès ou la survie du patient est enfin déterminé par la génération d’un nombre aléatoire au sein d’une distribution uniforme : le tirage d’un nombre supérieur à la probabilité de décès déterminée au cours des étapes précédentes correspondant à la survie du patient ». Cette approche a également été utilisée pour définir la survenue des événements suivants ainsi que leur durée : arrêt du traitement, EP, diabète, S. Aureus, B. Cepacia, transplantation pulmonaire, effets indésirables. Le modèle génère 6 000 simulations (6 reproductions de 1 000 patients) sur chaque bras de traitement, cependant en fonction du jeu de données tiré aléatoirement au sein d’une distribution uniforme, on peut tout de même s’attendre à ce que ces valeurs aient un impact notable sur l’ensemble des résultats (par exemple, si le jeu de valeurs utilisé prend des valeurs particulièrement hautes ou basses). **NB** : A chaque cycle, la valeur tirée aléatoirement étant

similaire entre Orkambi® et SoC, ceci semble amoindrir l'impact éventuel sur les résultats incrémentaux.

8. Pouvez-vous fournir un élément justificatif (par exemple une référence méthodologique) pour cette approche basée sur un tirage aléatoire à chaque cycle sur base d’une distribution uniforme plutôt qu’un seuil fixé à 50% ou une distribution selon une loi normale (cf. Figure 14 ci-dessous) ?

9. Pouvez-vous également fournir des analyses en scénario en faisant varier ce jeu de variables aléatoires ? Par exemple, en utilisant un autre tirage sur base d’une distribution uniforme, en utilisant un seuil fixe et/ou une autre distribution ?

Figure 14. Modèle de survie

- Mortalité homme/femme

10. Dans le modèle, les taux de mortalité pour les femmes et les hommes semblent implémentés de manière incorrecte (c.à.d. Taux de mortalité pour les femmes = Taux de mortalité pour les hommes ; FdC « Model parameters », rang « G368 :G478 » lié aux mêmes cellules que le rang « F479 :G170 »). Merci de justifier, ou de corriger, ainsi que de mettre à jour les résultats en conséquence le cas échéant.

- Age : « Age at which the segmented curve starts »

11. Dans le modèle, un âge fixé à 35 ans est utilisé pour déterminer le seuil au-delà duquel la fonction de survie n’est plus basée sur la courbe de Gompertz (c.à.d. variable « Age.Segmentation » définit dans la cellule « J13 » à la FdC « Mortality » en cellule cachée).

NB : Après 35 ans, le calcul est le suivant : Taux de survie (t) = Taux de survie (t-1) x (1 – 0.0709). Ces valeurs ne semblent pas être discutées dans le rapport. Pouvez-vous fournir plus de détails sur ces hypothèses (par exemple sources) ?
12. La Figure 15 ci-dessous présente la moyenne des VEMS en pourcentage par groupe d’âge extraite des registres français de la mucoviscidose en 1992, 2001 et 2013. Comme constaté sur la figure, il ne semble pas y avoir d’évolution nette du VEMS entre les patients toujours en vie âgés de 20-24 ans et ceux de 40 ans et plus. Au vu de ces données, il semblerait qu’à partir d’un certain âge la fonction respiratoire se dégrade moins rapidement voir se stabilise. L’évolution du VEMS semble directement dépendante de l’âge. Pouvez-vous fournir les résultats des analyses de référence demandées à la question 16 ci-dessous, stratifiés par groupe d’âge par tranche de 5 ans, c.à.d. entre 12-14 et 15-19, 20-24, etc ?

Le Tableau 53 fournit un exemple possible pour présenter les résultats.

Figure 15. Moyenne des VEMS (%) par âge, en 1992, 2001 et 2013, issue du registre français de la mucoviscidose
Tableau 53. Exemple de présentation des résultats par groupe d’âge pour une analyse (valeurs supposées actualisées)

<table>
<thead>
<tr>
<th>Groupe d’âge (années)</th>
<th>Coût (€)</th>
<th>Années de vie</th>
<th>QALY</th>
<th>Résultats différentiels</th>
<th>RDCR (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Orkambi®+ SoC</td>
<td>SoC</td>
<td>Orkambi®+ SoC</td>
<td>SoC</td>
<td>RDCR (€)</td>
</tr>
<tr>
<td>12–14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15–19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20–24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30–34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35–39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensemble</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13. Concernant la dynamique de diminution du VEMS chez les patients traités par Orkambi® + SoC, pouvez-vous justifier le fait d’avoir estimé la pente de diminution du VEMS après les 4 premières semaines de traitement et non après les 8 premières semaines ?

Explication de la question : Il est indiqué en page 72 du rapport : « Afin d’exclure l’augmentation initiale du VEMS sous Orkambi® de l’analyse, celle-ci est basée sur des opérations faites après un mois (4 semaines) de traitement ». Cependant, il apparaît sur les graphiques fournis dans le rapport, qu’une augmentation absolue du VEMS est toujours visible entre 4 et 8 semaines de traitement. L’estimation du coefficient de diminution du VEMS devrait donc à priori se faire à partir du dernier point le plus haut de la courbe, c’est-à-dire à 8 semaines de traitement par Orkambi®.

14. Dans votre analyse de référence, la valeur du VEMS jusqu’à la 24^{ème} semaine est issue des essais cliniques ; à partir de la 24^{ème} semaine, le VEMS diminue à un taux constant jusqu’à la fin de l’horizon temporel de -0,68. Cette valeur semble issue du calcul suivant (à partir des données de Konstan et Sawicki) :

\[ET_{VEMS/âge} \times (1 - SoC_{VEMS/âge}) = -0.68 \]

Avec \(ET_{VEMS/âge} \) : l’effet traitement sur la diminution du VEMS par groupe d’âge :
- Age <18 : 70,9%
- Age 18-24 : 64,6%
- Age ≥ 25 : 53,1%

\(Et \) SoC_{VEMS/âge} : le changement annuel du VEMS pour les patients sous Soc par groupe d’âge :
- Age <18 : -2,34
- Age 18-24 : -1,92
- Age ≥ 25 : -1,45

Pouvez-vous détailler la manière dont ont été obtenues ces valeurs (calculs, sources) ?

15. La méthodologie employée pour déterminer la dynamique de diminution du VEMS pour d’Orkambi® +SoC se fonde sur la disponibilité des résultats intermédiaires de l’étude d’extension PROGRESS. Pouvez-vous confirmer que les données intermédiaires correspondent bien à la 24^{ème} semaine de l’étude PROGRESS ? Dans le cas contraire, pouvez-vous préciser ?

16. Comme souligné dans la discussion du rapport, la dynamique de dégradation de la fonction respiratoire des patients a une influence notable sur les résultats. En fonction de la méthode d’extrapolation choisie pour modéliser cette cinétique après 24 semaines, on peut constater un écart important de l’évolution du %VEMS au cours du temps entre les deux bras de traitement. En outre, l’évolution du VEMS semble directement dépendante de l’âge.

Afin de pouvoir évaluer correctement l’incertitude autour des extrapolations de l’évolution du VEMS, pouvez-vous présenter et comparer les résultats des différents scénarios suivants stratifiés par groupes d’âge par tranche de 5 ans (cf. question 12).

- Analyse 1 : à partir de la 24^{ème} semaine, le VEMS d’Orkambi® +SoC diminue à un taux constant annuel jusqu’à la fin de l’horizon temporel.
- Analyse 2 : il est supposé que le VEMS d'Orkambi® +SoC reste stable jusqu'à la semaine 48, puis diminue à un taux réduit de 53% par rapport à celui du SoC (c.à.d. -1,01% pour les moins de 18 ans, -0,90% pour les 18-24 ans et -0,68% pour les 25 ans et plus).

NB : ceci correspond à l'analyse en scénario déjà effectuée ; cependant il n’est pas clairement précisé à partir de quelle semaine le changement d’évolution du VEMS s’applique.

- Analyse 3 : il est supposé que le VEMS d'Orkambi® +SoC reste stable jusqu’à la semaine 48, puis diminue selon le même coefficient que le SoC (c.à.d. -2,34% pour les moins de 18 ans, -1,92% pour les 18-24 ans et -1,45% pour les 25 ans et plus).

Extrapolation de l’évolution du poids en z-scores

17. Concernant le coefficient d’évolution du poids en z-score pour Orkambi® au cours des 4 premières semaines, le tableau 25 renseigne une valeur de 0,068. Or le modèle Excel renseigne une valeur de 0,08. Il est attendu une harmonisation de cette valeur entre le rapport et le modèle et, si besoin, une présentation actualisée des résultats de RDCR et des analyses de sensibilité sur cette valeur.

18. Concernant les patients traités par SoC, leur évolution du poids en z-score est supposée inchangée au cours de la simulation. Or les études cliniques montrent une évolution de l’IMC au cours des 4 premières semaines de traitement avant une stabilisation (augmentation de 0,13 (p=0,007) selon les données cliniques poolées). Pouvez-vous justifier le fait de ne pas avoir tenu compte de cette variation dans le modèle ?

Principales hypothèses simplificatrices

- Indépendance des effets du traitement sur le VEMS et les EP

19. Dans le modèle l’hypothèse suivante est faite : «l’effet du traitement par Orkambi® sur ces deux paramètres [cf. VEMS et EP] est supposé indépendant […] Afin de tenir compte de l’impact du traitement observé dans les essais sur ce paramètre, un risque relatif (RR) est donc appliqué aux patients traités par Orkambi®». Le RR appliqué dans le modèle est de 0,442 (cellule « K9 » de la FdC « Treatments Effects ») ; cependant ce paramètre n’est pas présenté dans le rapport d’efficience. Pouvez-vous fournir les détails et références utilisées pour dériver cette valeur ?

- Observance

20. Dans le modèle l’hypothèse suivante est faite : « Les données d’efficacité incluses dans le modèle étant issues des analyses en intention de traiter (ITT) des essais TRAFFIC et TRANS-PORT, l’effet du traitement ne sera pas impacté chez les patients interrompant ce dernier. Pour les mêmes raisons, la prise en compte de l’observance n’impactera que les coûts. Conformément aux résultats des essais, un taux d’observance sera appliqué dans le modèle. »

Des analyses de sensibilité déterministes ont été effectuées pour évaluer l’impact de ce paramètre (81% par défaut) sur les résultats (tableau 71 p.119 du rapport d’efficience). Ce paramètre semble être le paramètre ayant le plus d’impact sur le RDCR (cf. le diagramme de tornado p. 121 du rapport, Figure 34). Cependant, lorsque le taux d’observance passe de 60% à 100%, le nombre de QALY incrémental entre Orkambi® et le SoC ne varie pas (c.à.d. 2,27). En forçant ce paramètre à 0% (c.à.d. le patient ne prend jamais son traitement), le nombre de...
QALY incrémental entre Orkambi® et SoC ne change pas, alors que les coûts de traitement totaux pour Orkambi® passe à 0€. Au vu de ces résultats, cette hypothèse semble problématique et inadéquate avec la structure du modèle. Pouvez-vous comparer ces résultats avec les résultats d’une analyse sur la base de données per protocole sans inobservance, et éventuellement ajuster cette hypothèse en conséquence dans les analyses de référence ?

Transplantation pulmonaire

21. Dans le modèle, l’hypothèse suivante est faite : « Ces données françaises [i.e. La proportion de patients dont le VEMS est inférieur à 30% et qui reçoivent une greffe] n'étant pas disponibles au moment de la réalisation du modèle et des analyses de sensibilité, elles n'ont pas pu être intégrées dans celui-ci. » Cependant, ces données sont fournies dans le rapport : « Parmi eux, 18 patients ont effectivement reçu une greffe, soit 19,5% ». Pouvez-vous justifier l'utilisation des données anglaises (c.a.d. 15% issu de Whiting et al.39) ? Sinon merci d’utiliser la donnée française et de mettre à jour les résultats des analyses de référence en conséquence le cas échéant.

Identification, mesure et valorisation des états de santé

Données d’utilité retenues dans le modèle

22. Les valeurs d’utilité stratifiées par niveau de VEMS prises en compte dans le modèle correspondent à celles de l’étude de Whiting et al. (2014)39 qui ont été retenues par le NICE dans l’évaluation de l’efficacité de Kalydeco®. Vous précisez que ces valeurs sont fondées sur les réponses au questionnaire SF-36 de 226 adultes et adolescents âgés de 14 à 52 ans (âge moyen 25,15 ans) souffrant de mucoviscidose et traités dans les centres spécialisés de Manchester et de Leeds au Royaume-Uni. Dans la publication de Whiting (full report, 2014), ces informations ne sont pas disponibles. Aussi, pouvez-vous transmettre des sources d’informations complémentaires, en particulier concernant la fréquence de recueil des données, le nombre de répondants, leurs caractéristiques, etc... ?

23. Vous précisez que les réponses au questionnaire SF-36 ont été stratifiées en fonction du VEMS et que les scores rapportés par Gee et al. ont été « transformés » en utilités grâce à une division par 100. La référence [4] semble erronée et la publication de Gee (2000) ne permet pas de retrouver ces données ni celle de Whiting (2014). Pouvez-vous apporter davantage d’explications sur la façon dont ces valeurs d’utilité ont été obtenues et fournir la publication suivante :

25. La désutilité associée à l’occurrence d’une exacerbation pulmonaire retenue pour l’analyse de
référence est celle issue de l’étude de Solem (2014). Une désutilité de 0,0256 associée à une durée de l’événement de 23,9 jours est appliquée pour chaque EP du cycle, conformément aux observations faites au cours de l’essai STRIVE: 35,6% des EP requièrent une hospitalisation et durent en moyenne 30 jours et 64,4% des EP ne requièrent pas d’hospitalisation et durent en moyenne 20,6 jours. Pouvez-vous clarifier comment sont obtenus ces résultats et préciser les sources (essai STRIVE)? Ces données n’étaient-elles pas disponibles dans le registre français ?

26. Pouvez-vous spécifier les événements indésirables graves de grade 3 et plus pour Orkambi® + SoC et pour le SoC, et justifier de ne pas les avoir pris en compte en termes de désutilités dans le modèle ?

Identification, mesure et valorisation des coûts

Coût du traitement

27. Pouvez-vous clarifier le calcul effectué pour obtenir le coût d’acquisition annuel d’Orkambi® par patient (c.à.d. xxxx €/an dans l’analyse de référence)?

Explication de la question: sur une base d’un coût de xxxx € HT par boîte de 112 comprimés de lumacaftor/ivacaftor (200mg/125mg), et une posologie de 4 comprimés par jour (800mg/500mg), on peut estimer le coût annuel (c.à.d. sur 365.25 jours) par patient à xxxx € (NB : en arrondissant à 365 jours, le coût est de xxxx €).

28. Dans les coûts de suivi du traitement, pourquoi ne pas avoir pris en considération la surveillance des patients ayant un VEMS <40% en début de traitement ?

Explication de la question: selon le RCP d’Orkambi®, les événements respiratoires (par exemple, gêne thoracique, dyspnée et respiration anormale) ont été plus fréquents au début du traitement par l’association lumacaftor/ivacaftor. L’expérience clinique chez les patients ayant un VEMS < 40 % de la valeur théorique est limitée et une surveillance supplémentaire de ces patients est recommandée en début de traitement.

29. Dans les coûts de suivi du traitement, pourquoi ne pas avoir pris en considération les examens ophtalmologiques chez les enfants (d’ailleurs prévu dans le modèle Excel)?

Explication de la question: selon le RCP d’Orkambi®, des examens ophtalmologiques avant et pendant le traitement sont recommandés chez les patients pédiatriques recevant un traitement par l’association lumacaftor/ivacaftor.

30. Pouvez-vous apporter des éléments d’information afin de montrer que les données prises en compte ne conduisent pas à sous-estimer le coût des EI, notamment ceux nécessitant une hospitalisation ? Pouvez-vous également présenter de façon détaillée la mesure, la valorisation et le calcul des coûts de traitement de chaque EI considéré ?

Explication de la question: selon le profil de tolérance pour Orkambi® 17,3% d’événements indésirables graves à 24 semaines vs. 28,6% pour placebo sont rapportés.

Coûts de prise en charge stratifiés selon la sévérité de l’atteinte pulmonaire

31. Les coûts retenus pour la modélisation sont ceux obtenus pour les adultes dans la publication de Chevreul (2015) soit un coût annuel par patient de 23 968€ (coût 2012) ; le

coût de l’ALD mucoviscidose estimé par l’Assurance maladie en 2012 est de 22 454€. Quels sont coûts totaux annuels moyens de prise en charge non actualisés issus du modèle ? Pouvez-vous discuter dans quelle mesure ces coûts de prise en charge ne sont-ils pas surestimé ?

32. Par ailleurs, les coûts pris en compte dans l’évaluation du coût de prise en charge des patients n’étant pas détaillés par poste de soins selon le traitement Orkambi® + SoC et selon le SoC, il est attendu que soient précisés en fonction des traitements comparés dans le modèle, le détail des ressources consommées, leur fréquence ou volume, les coûts unitaires et les sources.

Explication de la question : les coûts par poste de soins présentés dans le rapport ne permettent pas d'identifier les coûts de suivi de la maladie, des coûts associés à la prise en charge et à l'évolution de la maladie, en particulier, les hospitalisations, les auxiliaires médicaux (kinésithérapie, IDE), (hors coûts de prise en charge des exacerbations pulmonaires). La présentation ne permet pas non plus d'évaluer le risque de double compte notamment avec le traitement des EI, le suivi du traitement ou des patients transplantés.

33. Dans le tableau 45, pouvez-vous expliquer comment est calculé le coût moyen ? Par ailleurs, l’étude de Colombo prend en compte les produits de nutrition ; ont-ils été intégrés dans le calcul du coût moyen ?

34. Les postes de coût pris en compte dans l’étude de Chevreul33 et ceux de l’étude de Colombo35 n’étant pas parfaitement superposables, il est attendu une explication précise des correspondances entre les postes de coût pris en compte, des calculs effectués et des limites de cette méthode (tableaux 46 et 47).

35. Vous précisez que l’identification des EP dans le registre français de la mucoviscidose se fonde sur l’identification des patients ayant reçu une antibiothérapie. Pouvez-vous expliciter en quoi le proxy retenu pour le nombre d’EP ne conduit-il pas à surestimer la fréquence des exacerbations pulmonaires ? D’autres sources d’information peuvent-elle corroborer la fréquence annuelle moyenne de 0,72 retenue pour le calcul du coût annuel moyen de prise en charge des EP ?

36. A partir du registre français de la mucoviscidose, vous avez estimé que 25,6% des EP sont prises en charge à l’hôpital et que 71,2% sont prises en charge à domicile. Pouvez-vous justifier le fait que la somme de ces deux pourcentages ne soit pas égale à 100% ?

37. Le coût de la prise en charge hospitalière des exacerbations pulmonaires est basé sur la valorisation selon l’ENC des GHM « Infections et inflammations respiratoires » pour les patients de plus de 17 ans (GHMV11 04M071, 04M072, 04M073, 04M074 et 04M07T). Pouvez-vous expliciter comment la part de chaque niveau de sévérité est prise en compte dans le coût de la prise en charge hospitalière des exacerbations pulmonaires et leur valorisation selon l’ENC ? Il est également attendu que le calcul du coût d’hospitalisation soit explicité (fréquence et coûts unitaires) et présenté en fonction des traitements comparés dans le modèle.

38. Dans le tableau 48, la durée du traitement antibiotique par IV pour le traitement des exacerbations pulmonaires est fixée à 7,6 jours. Il est attendu qu’une durée du traitement antibiotique de 15 jours soit appliquée.

34 Coût des ALD en 2009 dans la population du régime général ; www.ameli.fr
Explication de la question : Les recommandations préconisent une durée d’antibiothérapie de 15 jours en cas d’exacerbation pulmonaire. De plus, d’après le bilan des données de 2013 du registre français de la mucoviscidose, la durée moyenne d’une cure d’antibiotique était de 15,3 jours (68 861/4501)

39. Pouvez-vous détailler le coût journalier du traitement antibiotique des exacerbations pulmonaires ? Il est attendu que les coûts liés à l’acte infirmier ainsi que les coûts du médicament antibiotique soient pris en compte dans le calcul et que le calcul soit détaillé.

40. Les coûts liés à la procédure et au suivi des transplantations pulmonaires semblent incomplets ne prenant pas en compte les examens de biologie et les traitements par immunosuppresseurs, notamment. Il est attendu que les coûts pris en compte soient détaillés et présentés en fonction des traitements comparés dans le modèle.

41. Pouvez-vous présenter un tableau récapitulatif, pour chaque intervention comparée, des coûts totaux pour l’ensemble des postes de soins pris en compte dans le modèle en cohérence avec les résultats présentés dans le tableau 58 et les données introduites dans le modèle Excel ?

Résultats et analyses de sensibilité

Résultats

42. Pouvez-vous présenter les résultats du tableau 58 en termes de coûts annuels moyens et en cohérence avec les postes de coûts finalement retenus dans les analyses de référence ?

Analyses de sensibilité

▶ Équations de risque

43. Concernant les équations de risque de Liou et al. 2001, il semble y avoir une incohérence entre les erreurs-types des coefficients des équations de risques de Liou et al. issus du modèle Excel et ceux du rapport (voir Tableau 54 ci-dessous). Merci de justifier, ou de corriger, ainsi que de mettre à jour les résultats en conséquence le cas échéant.

Tableau 54. Paramètres associés aux caractéristiques individuelles prises en compte dans le modèle de Liou et al.

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Coefficient</th>
<th>Erreur type</th>
<th>Rapport/ Liou et al.</th>
<th>Modèle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (années)</td>
<td>0,011</td>
<td>0,0049</td>
<td>0,2700</td>
<td></td>
</tr>
<tr>
<td>VEMS (%)</td>
<td>-0,042</td>
<td>0,0025</td>
<td>0,0028</td>
<td></td>
</tr>
<tr>
<td>Sexe (% femme)</td>
<td>0,150</td>
<td>0,0740</td>
<td>0,1000</td>
<td></td>
</tr>
<tr>
<td>Poids en z-score pour l'âge</td>
<td>-0,280</td>
<td>0,0410</td>
<td>0,0530</td>
<td></td>
</tr>
<tr>
<td>Fonction pancréatique exocrine suffisante (%)</td>
<td>-0,140</td>
<td>0,2300</td>
<td>0,3100</td>
<td></td>
</tr>
<tr>
<td>Diabète (%)</td>
<td>0,440</td>
<td>0,0980</td>
<td>0,1500</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus (%)</td>
<td>-0,250</td>
<td>0,0900</td>
<td>0,1200</td>
<td></td>
</tr>
<tr>
<td>Burkholderia cepacia (%)</td>
<td>1,410</td>
<td>0,1900</td>
<td>0,3000</td>
<td></td>
</tr>
<tr>
<td>Fréquence annuelle des exacerbations pulmonaires</td>
<td>0,350</td>
<td>0,0240</td>
<td>0,0310</td>
<td></td>
</tr>
<tr>
<td>Exacerbations + Burkholderia cepacia</td>
<td>-0,280</td>
<td>0,0600</td>
<td>0,1200</td>
<td></td>
</tr>
</tbody>
</table>

Analyses de sensibilité déterministes

44. Compte tenu de la durée de vie médiane de 31 ans des patients atteints de mucoviscidose, il est attendu qu’un horizon temporel de 20 ans soit testé en analyse de sensibilité.

45. Des analyses de sensibilité ont été réalisées avec des coûts d'acquisition d’Orkambi® inférieurs et supérieurs à la valeur de référence (90%, 95% et 110%). Pouvez-vous intégrer une analyse fondée sur une variation de 50% du prix de l'analyse de référence ?

Analyses de sensibilité probabiliste (ASP)

46. Concernant la présentation des ASP, il est attendu que les résultats par groupe d’âge soient présentés sur un même graphique (c.à.d. un graphique pour chaque analyse de référence) ?

Analyses en scénario

Analyse en scénario concernant l'évolution moyenne du VEMS :

D'après les Figure 16 et Figure 17, en fonction de la loi de distribution utilisée pour extrapolier les données (fonction linéaire ou logarithmique), il existe un impact notable sur la dynamique de dégradation du VEMS entre les traitements comparés.

47. Pouvez-vous réaliser une analyse en scénario dans laquelle les fonctions logarithmiques sont utilisées dans le modèle pour extrapolier la variation du VEMS pour le SoC et pour Orkambi®? Dans ce cas pouvez-vous fournir les détails/sources utilisés pour dériver les paramètres de l’équation logarithmique (p.ex. min = 51 ; max = 101,96 ; a = 0,24 ; x₀ = 16,78 ; cellules « Z16:AA19 » FdC « Treatment Effects ») ?

48. Pouvez-vous discuter les résultats par rapport à la fonction linéaire utilisée dans les analyses de référence ?
Figure 16. Dynamique de dégradation du %VEMS par âge en fonction du mode d'extrapolation

Figure 17. Evolution du VEMS au cours du temps générée par le modèle, en fonction du mode d'extrapolation, pour un patient ayant un VEMS de 77% à l'entrée du modèle (VEMS moyen d'après le registre français)

NB : L'échelle sur l'axe des abscisses suit les cycles du modèle (Cycles de 4 semaines de 0 à 2 ans, puis des cycles annuels après 2 ans)
49. Les valeurs renseignées dans le tableau 54 à partir des publications de Sawicki et al.37 et de De Boer et al.38 n'ont pas été retrouvées dans les publications respectives. Par ailleurs, la publication de De Boer évoque la diminution du VEMS en fonction du nombre d'EP/an et non pas en fonction de l’âge. Dans la publication de Sawicky et al., la cinétique de diminution du VEMS dans le groupe contrôle des patients homozygotes F508 del est de -1,72% (-1,73% renseigné dans le tableau). Pouvez-vous apporter des précisions sur ces éléments ?

50. Dans le tableau 55, les coefficients de diminution du VEMS sous Orkambi® renseignés dans la 3ème colonne à partir de l’étude de Sawicki et al. n’ont pas été retrouvés dans la publication. Pouvez-vous apporter des précisions sur les modalités d’obtention de ces coefficients ?

51. Dans le modèle, la fréquence des EP est déterminée par une équation dérivée de Whiting et al.39 en fonction du VEMS et l’âge du patient. L’hypothèse d’indépendance des effets du traitement sur le VEMS et les EP apparaît discutable ; pouvez-vous donc présenter un scénario en fixant la valeur du RR à 1 ?

52. Dans le modèle l’hypothèse suivante est faite : « Il est supposé que les patients ayant poursuivi le traitement pendant la totalité des 24 semaines poursuivront celui-ci sur la totalité de l’horizon temporel ou jusqu’à ce qu’une transplantation pulmonaire soit réalisée. » Une analyse en scénario a déjà été effectuée en supposant que 30% des patients interrompent leur traitement après 15 ans, soit un taux annuel d’interruption de 1,9%. Dans les essais TRAFFIC et TRANSPORT, « 43 patients (4,2%) présentaient un événement indésirable ayant conduit à l’arrêt du traitement » (cf. p. 49 du rapport d’efficience). Pouvez-vous donc ajouter un scénario en supposant un taux annuel d’interruption de traitement de 4,2% ?

53. Dans l’analyse en scénario concernant les données d’utilité associées aux niveaux de l’atteinte pulmonaire, pouvez-vous apporter des précisions sur les modalités d’obtention des données d’utilité de Chevreul stratifiées par niveau de VEMS ?

Points divers

54. Pouvez-vous préciser le nombre de patients ayant été inclus dans l’ATU de cohorte d’Orkambi® ? Des ATU nominatives ont-elles été octroyées par l’ANSM pour Orkambi® ? Si oui, pour quelles indications ?

55. Pouvez-vous préciser le montant remboursable annuel attendu à deux ans au prix revendiqué ?

56. Pouvez-vous estimer la population rejointe à deux ans ?

Toutes les publications de la HAS sont disponibles sur www.has-sante.fr