HAUTE AUTORITÉ DE SANTÉ

COMMISSION DE LA TRANSPARENCE

Mercredi 8 janvier 2020

Commission de Transparence
AVERTISSEMENT

En application des articles L. 1451-1-1 et R. 1451-6 du Code de la santé publique, la HAS réalise un enregistrement des séances de la commission de la transparence (CT), de la Commission d'évaluation des dispositifs médicaux et des technologies de santé (CNEDIMTS) et de la Commission évaluation économique et santé publique (CEESP). Pour en faciliter la communication et la compréhension, la HAS a fait le choix de recourir à une transcription des débats par l'intermédiaire d'une société prestataire.

Cette prestation associe une saisie directe des débats par sténotypie et une transcription assistée par ordinateur ainsi qu'une relecture médicale. L'objet de cette transcription est de permettre de tracer le déroulé des débats dans un souci de transparence et non de fournir une information scientifique validée. En effet, malgré le professionnalisme de cette prestation, il peut persister dans le texte final des incongruités ou des inexactitudes liées à l'usage d'un vocabulaire hautement spécialisé ou à la nature même des échanges verbaux. La HAS n'effectue aucune validation de ces documents.

La HAS rappelle que les seuls documents validés et opposables sont le procès-verbal de la séance et l'avis définitif de la Commission qui sont mis en ligne sur le site de la HAS.

Pour la publication des transcriptions, et dans un but de protection du secret industriel et commercial, certains mots peuvent avoir été occultés. Les occultations éventuelles sont de la responsabilité de l'entreprise exploitant le produit évalué.

Toute reprise d'un ou plusieurs extraits d'une transcription doit être accompagnée d'une mention en précisant la source et respecter la législation sur la publicité.

Les membres des commissions s'expriment à titre personnel dans le cadre de leur mission d'expertise. Les agents de la HAS (chefs de service, adjoints, chefs de projet) représentent l'institution et s'expriment en son nom.

La HAS rappelle que la connaissance des propos tenus en séance par les membres des commissions et les agents de la HAS ne peut en aucun cas justifier des contacts directs de quelque nature que ce soit avec ces personnes, lesquelles sont tenues à une obligation de confidentialité conformément à l'article R. 161-85 du Code de la sécurité sociale.
1. **ZERBAXA**

Mme GATTULLI pour la HAS.- Pour les trois produits, M. Lengliné ne peut pas participer à l’examen ni au vote.

(L’expert entre en séance)

Mme DEGOS, Présidente.- Nous avons trois antibiotiques qui arrivent en même temps. C’est important et intéressant.

Nous allons demander à Monsieur Bru, notre expert en la matière, de nous présenter un état des lieux sur les bêta-lactamasases et les inhibiteurs des bêta-lactamasases. Puis nous verrons successivement les trois dossiers.

Vous avez la parole.

M. le D’ BRU.- Merci et bonjour.

Bêta-lactamasases et inhibiteurs de bêta-lactamasases, c’est un énorme monde. Je vais essayer de dire comment le clinicien, finalement, essaie de s’arranger avec tout cela.

Très vite, les bêta lactamines agissent sur des enzymes de la bactérie qui servent à fabriquer le peptidoglycane qui entoure les bactéries.

Le peptidoglycane, c’est un phénomène dynamique. Il s’en fabrique en permanence et il est lysé en permanence. La bêta lactamine va empêcher ces enzymes de fabriquer le peptidoglycane.

Mécanismes de résistance aux bêta lactamines : il y a trois grands groupes. Le plus important est celui qui nous occupe aujourd’hui. La bactérie apprend à fabriquer des enzymes qui vont détruire la bêta lactamine qui se trouve ici entre la membrane et le peptidoglycane pour théoriquement inhiber ces petites protéines, les PBP.

Ces enzymes lysiques, les bêta-lactamasases, sont fabriquées par la bactérie à partir de matériel génétique soi acquis (les plasmides et tout le matériel transférable entre les bactéries), soit du matériel génétique lui-même intégré au génome de la bactérie. Il est constitué là. Cela a la particularité d’être transmissible et très peu spécifique entre les bactéries, donc tout un trafic de gène entre les bactéries.

Le deuxième moyen, c’est de modifier la PBP. C’est valable pour les SARM qui ont appris à fabriquer une PBP 2A ou 2’ qui n’a pas d’affinité pour la bêta lactamine équivalente pour pouvoir continuer à fabriquer son peptidoglycane. Mais ce n’est pas ce qui nous intéresse.

Il y a un dernier moyen important : la bactérie peut aussi apprendre à empêcher, elle doit traverser la paroi pour les Gram- pour trouver la PBP. Elle passe par les structures mêmes de la paroi externe bactérienne (les porines). Éventuellement, l’antibiotique peut être recraché

Commission de Transparence
par la bactérie par le mécanisme des flux. Ce sont des mécanismes de résistance très fréquents qui concernent les pseudomonas.

Je passe vite pour rappeler que les antibiotiques et la résistance aux antibiotiques sont quelque chose de parfaitement naturel. Vous le savez, les antibiotiques n’ont pas été inventés par Alexander Fleming, mais il a découvert que les champignons les fabriquaient. De ce fait, les bactéries sont en contact avec les antibiotiques depuis très longtemps et ont depuis très longtemps développé des mécanismes de résistance spontanés. Ce n’est pas nos antibiotiques qui leur ont appris quelque chose. Ici, cela se passe dans une grotte. C’est un papier de 2012 qui montre que nous avons entre 20 et 80 % chez les Gram+ et les Gram- de résistance chez des bactéries trouvées au fond d’une grotte au Nouveau-Mexique, alors qu’elle n’a vu personne depuis quatre milliards d’années à peu près.

C’est un phénomène parfaitement naturel. Les antibiotiques au départ étaient des constituants des bactéries. Vous avez ici un exemple important. La PBP 2a dont j’ai parlé est une PBP normale d’un staphylocoque, scuri. C’est un dérivé de sa PBP. C’est son constituant qui confère une résistance à la métricilline et qui ensuite a pu être transféré à d’autres staphylocoques, dont le doré.

Les bêta-lactamasas à spectre élargi sont présentes naturellement présent dans un groupe de bactéries, Klyuvra, bactéries de l’environnement. La mauvaise nouvelle, c’est que, quand les gènes codent pour ces bêta-lactamasas spectre élargi qui sont présentes naturellement en Klyuvra, ils sont passés Escherichia coli. C’était une très mauvaise nouvelle.

Klyuvra avait sur son génome ce bout de gène qui code pour une EBLSE. C’est transféré et passe sur un élément mobile qui est transféré à une autre bactérie et cela peut diffuser en se transférant à d’autres plasmides, etc.

Nous avons la notion de résistance qui est le réservoir de gènes qui peuvent se modifier et évoluer. C’est très important.

Il y a deux phénomènes. Le premier est celui que nous avons vu : à partir du progéniteur, transféré sur un plasmide, le plasmide est transféré à d’autres bactéries. C’est la diffusion. Après il y a diversification. Quand le plasmide est dans une bactérie, il continue à se modifier et évoluer pour se diversifier et éventuellement avoir d’autres activités de résistance. Cela peut être spontané ou provoqué.

Nous ajoutons au dendrogramme des bêta-lactamasas connues actuellement. Il y en a une quantité gigantesque. Il y a l’ensemble des bêta-lactamasas qui sont en grande partie ici, les EBLSE, en orange. Ici, vous avez une autre famille. Vous avez quatre grands groupes de bêta-lactamases ici, qui sont un monde en soi et qui continuent à évoluer en permanence.

Il y a une classification très utile que se fonde sur le dendrogramme que l’on vient de voir, en quatre classes, celle d’Ambler : classes A, B, C et D qui correspondent à des proximités génétiques entre les bêta-lactamasas. Il y a deux choses importantes : soit ce sont des gènes chromosomiques, donc constitutifs de la bactérie, soit ils sont portés par des éléments mobiles et donc transférables.

La classe B, ce sont des carbapénemases essentiellement ou exclusivement. Et les classes C, ce sont des céphalosporinas qui ont des particularités très intéressantes. Nous les verrons. Elles sont, à bas niveau, constitutives de ces bactéries Enterobacter, Citobacter, Serratia, et c.c. Elles ont toutes cela dans leurs chromosomes. Elles sécrètent à bas niveau, donc font rendues sensibles, mais peuvent, par des phénomènes de dérégulation, se mettre à hyperproduire.

Puis il y a les mêmes portées par des éléments mobiles, mais c’est moins important.

Puis, il y a les classes D, les oxacillinas. Vous avez les spectres étroits qui peuvent détruire l’oxacilline, mais ce n’est pas très fréquent. Puis vous avez les BLSE OXA et les carbapénèmes OXA (en particulier OXA-48).

En face de cela, nous avons développé des inhibiteurs de bêta-lactamases, avec une première génération qui était en fait des bêtaalactamines.

Depuis récemment (c’est l’objet de la réunion de aujourd’hui), ont été développés des inhibiteurs non bêta-lactamases avec des molécules complètement inventées, qui vont essayer de se fixer sur la bêta-lactamase pour l’empêcher de détruire l’antibiotique associé.

Ici, vous avez cette grosse molécule qui est une bêta-lactamases, avec toutes les zones blanches et vertes qui sont les zones variables, permettant l’évolution et de créer d’autres bêta-lactamases. Vous avez des zones plus conservées. L’avibactam vient se fixer sur la zone conservée de la bêta-lactamase pour l’empêcher de se fixer sur la bêta lactamine et de la détruire et de la lyser.

Voilà comment cela marche.

Si on reprend la classification et que l’on s’intéresse au BLSE. Ce sont des molécules qui vont hydrolyser les pénicillines, toutes les céphalosporines, C1, C2, C3 et quatrième génération, le monobactam. Nous verrons qu’il y a de petites subtilités, mais ces BLSE sont en grande partie sensibles aux inhibiteurs de bêta-lactamases, notamment historiques, c’est-à-dire les précédents.

Il reste finalement les carbapénèmes, la céfoxidine, la témocilline et les inhibiteurs de bêta-lactamases.

Sur les EBLSE, pratiquement tous les inhibiteurs, anciens et nouveaux, sont actifs, avec quelques remarques. Vous avez ici théoriquement une activité avibactam, acide clavulanique, tazobactam pour les sérines de classe A. Mais vous avez aussi ici, à l’intérieur de ces BLSE, une grande hétérogénéité. Quand vous regardez réellement, certaines CTX-M confèrent résistance à pipercilline tazobactam. La principale chez nous, la CTX-M14, reste sensible mais avec des CNI un peu élevés.

Commission de Transparence
Les anciens inhibiteurs, en particulier le tazobactam, sont actifs contre les BLSE avec quelques trous. Sur une série française de 2013, la TAZOCILLINE est active sur à peu près 80 % des Escherichia coli producteurs de BLSE en France.

BLSE, oui, nous sommes actifs avec les anciens inhibiteurs bêta-lactamases, mais avec des résistances pouvant exister, alors qu’ici, bétalactame + avibactam, nous sommes à 100 % de sensibilité sur les BLSE, que ce soit entérobactéries ou pseudomonas.

Sur le chapitre BLSE, oui, les nouveaux inhibiteurs peuvent apporter un petit quelque chose, mais dans la clinique, les données de l’utilisation de piperacilline tazobactam sur les BLSE sont satisfaisantes malgré un essai récent qui disait le contraire mais avec de gros problèmes de méthodologie. Nous sommes d’accord. Là-dessus, il n’y a pas tellement de bénéfice avec les nouveaux inhibiteurs.

Les classes C, céphalosporinase, ce sont les AmpC inductibles, constitutifs ici ils peuvent être déréprimés. Ici, c’est rendu sensible C3G. Mais ces gènes ont des mutations spontanées fréquentes. Dès que vous avez 10⁷ bactéries, vous avez un mutant résistant déréprimé qui va hypersécréter la céphalosporinase et détruire la bétalactamine en question...

Si nous utilisons un C3G, nous sommes actifs sur la forme sauvage ici avant que ne soit éventuellement sélectionné le mutant déréprimé, si la quantité de bactéries est suffisante (de l’ordre de 10⁻⁴ à 10⁻⁷). Nous arrivons à ces mutants déréprimés qui hydrolysent les pénicillines, les C1G, C2G et C3G et les inhibiteurs de bêta-lactamases de type historique. Nous perdons toutes les C3G si nous laissons échapper ce mutant déréprimé. Pour autant, si on les traite au départ et que l’inoculum réduit, le risque est réduit aussi de voir émerger le mutant résistant.

Il reste les carbapénèmes, la C4G (cépimeline) qui sur toutes les données, n’ont pas démérité par rapport aux carbapénèmes dans les données cliniques nous avons quand nous traitons des AmpC, y compris sur les déprimés avec du cépimeline (on fait aussi bien que le carbapénème). Puis restants actifs, les inhibiteurs de nouvelle génération : comme vous le savez, ceftolozane-tazobactam n’est pas un inhibiteur nouvelle génération. Pour autant, il a une certaine activité sur les AmpC. C’est probablement du fait de l’association des deux, mais cela reste à démontrer. Nous sommes bien sur le bénéfice des inhibiteurs nouvelle génération avec un risque qui doit être pondéré quand même, puisque ce n’est que si l’inoculum est très important et qu’il le reste pour sélectionner le mutant déréprimé.

Donc les anciens ne marchent pas. Avibactam, vaborbactam ou relebactam marchent bien sur les classes C.

Puis, vous avez, dans le groupe des oxacillinases (groupe D), beaucoup de types de molécules différentes. Donc, nous concevons bien la difficulté à avoir des inhibiteurs qui...
vont pouvoir être actifs à la fois sur ce type de molécules ici, qui appartiennent au groupe A, ou de ces metallo-bêta-lactamases ou de ces oxacillinases ici, puisque c’est très hétérogène. Même à l’intérieur du même groupe ici, hétérogène, de bêta-lactamases, il y a différents types d’oxacillinases carbaïnémases et leur conformation moléculaire est également différente, variable et évolutive.

Nous en sommes là avec ces trois types de carbaïnémases.

Que nous apportent les inhibiteurs nouveaux ?

Sur les classes A, les KPC, les nouveaux inhibiteurs, avibactam, vaborbactam et relebactam sont actifs sur les KPC.

Classe B, aucun. Sur tout ce que sont les metallo-bêta-lactamases, type New Delhi, aucun n’est actif.

Sur les classes D, vous avez une activité exclusivement de l’avibactam, et encore pratiquement exclusivement sur l’OXA-48. C’est la principale en termes de clinique, mais les autres oxacillinases ne sont pas inhibées par l’avibactam. Il y a un peu autres, mais un certain nombre échappe. Nous ne sommes pas du truc global en disant : avibactam est actif sur les classes D. Non, il est actif sur certaines oxacillinases, notamment OXA-48, de la classe D.

Et encore, si vous prenez les classes D et carbaïnémases, ici, nous ne pouvons pas dire que nous sommes actifs sur tout. Nous l’avons vu, mais il y a aussi de petites activités de tazobactam sur certaines carbaïnémases. Nous sommes sur une grande hétérogénéité. Mais globalement, nous avons un bénéfice d’avibactam sur un certain nombre d’oxacillinases carbaïnémases.

Est-ce que ces molécules apportent un bénéfice sur autre chose que les entérobactéries, telles que pseudomonas aéuginosa, acinetobacter, sur des bactéries résistantes aux carbaïnémases ? La réponse est que sur acinetobacter, il n’y a aucun bénéfice de ces molécules sur les bactéries résistantes aux carbaïnémases. Sur pseudomonas, il y a un bénéfice de l’avibactam. Ce n’est pas le tazobactam mais le ceftolozane dont l’intérêt essentiel se situe sur la pseudomonas. Il y a également une activité du relebactam sur les pseudomonas aéuginosa résistants au carbaïnème, mais pas sur méropénème-vaborbactam.

C’est très hétérogène.

Reste donc ces metallo-bêta-lactamases sur lesquelles les nouveaux inhibiteurs n’ont aucune action. Elles n’apportent pas de solution sur les metallo-bêta-lactamases, VIM NDM, mais nous avons un espoir sur les inhibiteurs avec l’association aztreonam avec avibactam, comme ZAVICEFTA. L’association aztreonam + avibactam paraît avoir un grand intérêt sur les NDM. Ce sont des Escherichia coli qui ont des carbaïnémases mais aussi d’autres bêta-lactamases. L’association aztreonam/avibactam pourrait avoir un intérêt sur ces molécules, les carbaïnémases de type B, c’est-à-dire les metallo-bêta-lactamases qui résistent à tout le reste.

Commission de Transparence
Nous avons aussi (je termine presque là-dessus) un peu d’espoir avec de nouvelles molécules ou d’autres que nous allons réutiliser. La fosfomycine, nous la connaissions. Une molécule arrive ici : le céfiderocol. C’est une molécule assez fascinante qui est une céphalosporine, mais dans la conformation lui permet de résister à toutes les bêta-lactamases connues actuellement. Il n’y a pas de résistance par l’intermédiaire des bêta-lactamases. En plus, il est associé. C’est un sidérophore. Cela lui permet de fixer le fer et donc d’utiliser les canaux de transfert du fer des bactéries pour entrer dans la bactérie. Elle s’affranchit donc du problème des porines et de l’efflux en utilisant les canaux de transfert du fer qui ne sont pas concernés par les modifications de la bactérie quand elle veut fermer ses porines ou recracher l’antibiotique. Cette molécule est en cours de développement et un essai clinique a été produit. Elle risque de s’avancer comme cela de façon intéressante.

Il y a eu un aminoside et l’eravacycline, une cycline montrant une activité in vivo là-dessus. Nous restons prudents puisque nous avons déjà été déçus.

Les mécanismes de résistance aux nouveaux inhibiteurs de bêta-lactamases : que se passe-t-il ? Des résistances sont déjà apparues. Il y a eu un premier papier y a un an et demi qui rapportait, à propos de 37 cas d’utilisation de ceftazidime/avibactam, 10 échecs virologiques et trois résistants. Il y a eu un autre papier récent sur métophène/vaborbactam qui rapporte deux résistants sur 30 malades traités et un papier qui vient de sortir sur une série dans la vraie vie de 200 malades traités par ceftazidime/avibactam dans laquelle ils n’ont pas de résistant. On ne sait pas trop ce qu’il va se passer, mais on sait que l’on peut en avoir. On a une confiance absolue dans les bactéries. Elles vont s’adapter.

Quels sont les mécanismes décrits de résistance aux nouveaux inhibiteurs de bêta-lactamases ? Il y a l’hyperproduction de la bêta-lactamase. C’est un mécanisme de résistance à ceftazidime-avibactam. La bactérie se dérègle complètement pour produire de la bêta-lactamase, inonder l’espace périplasmique et l’inhibiteur est complètement submergé par la bêta-lactamases et il en reste suffisamment pour détruire la bêta-lactamine.

Cela peut être aussi des mutations, ici de la bêta-lactamase. C’est une AmpC mutée qui confère une résistance à azobactam et une KPC avec une mutation de la bêta-lactamase qui fait que l’avibactam n’a plus d’affinité pour cette bêta-lactamase. Nous avons ici une augmentation du nombre de copies. Puis il y a la résistance ici importante qui est la modification des porines, c’est-à-dire des mutations sur les gènes régulant les porines qui se ferment et empêchent l’antibiotique d’entrer ou accélèrent son efflux. C’est très facile pour les bactéries et en particulier pour pseudomonas aeruginosa. Voilà ce que nous savons d’un papier récent qui fait le point sur les divers mécanismes de résistance retrouvés sous traitement par les inhibiteurs de bêta-lactamases nouveaux.

Mme DEGOS, Présidente. — Merci. **va nous** présenter les médicaments un par un.

Puis nous avons deux experts de la Commission, Serge Kouzan et Michel. Non Serge Kouzan seulement. Comme la présentation aura été complète, tu pourras te limiter à ton résumé-discussion de ton dossier que nous avons bien lu.

va nous, pour la HAS. — [...]
La spécialité ZERBXA du laboratoire MSD est une association à base céftolozane, une récente céphalosporine de troisième génération, et de tazobactam, un inhibiteur de bêta-lactamase.

Son AMM initiale était restreinte au traitement « des infections urinaires compliquées (y compris pyélonéphrites) » et des « infections intra-abdominales compliquées ».

Dans son avis d’inscription de 2016, la Commission avait considéré que le SMR par ZERBXA était important dans les indications de l’AMM et que ZERBXA n’apportait pas d’amélioration du service médical rendu dans la prise en charge.

La Commission avait souhaité la mise en place d’une étude de suivi permettant de décrire les conditions d’utilisation de ZERBXA en vie réelle.

Depuis le dernier avis de la Commission, ZERBXA a obtenu une extension d’indication dans le traitement des pneumonies nosocomiales, dont les pneumonies acquises sous ventilation mécanique.

Aussi, ce dossier concerne d’une part une demande d’inscription de cette extension d’indication et, d’autre part, une réévaluation à la demande de la Commission de la transparence, suite à la publication en juin 2019 des nouvelles recommandations.

Je laisse la parole à M. Kouzan.

M. le D° KOUZAN.- Juste une question de méthodologie, je parle des trois les uns après les autres ?

Mme DEGOS, Présidente.- Tu n’as pas la diapositive de ton tableau ?

M. le D° KOUZAN.- Non, mais nous pouvons le projeter.

Mme DEGOS, Présidente. Oui, parce qu’il est synthétique et bien.

M. le D° KOUZAN. En attendant, je fais un chapeau global. Puis, j’entre dans les trois molécules. Puis, je fais une conclusion commune.

En attendant que l’informatique arrive à son but, les antibiotiques sont développés en général selon un schéma standard. C’est l’époque où nous faisions un développement et nous voulions inonder le monde des antibiotiques. Il y a des indications clés comme les infections abdominales compliquées ou pas, les infections urinaires compliquées ou pas, les infections cutanées, les pneumonies communautaires et les pneumonies nosocomiales.

Quand nous voulons avoir beaucoup d’indications, on développe dans tout.

La problématique actuelle, c’est que des antibiotiques dans 50 indications, nous ne sommes plus intéressés parce que la problématique n° 1 maintenant, ce sont les résistances. L’industriel est confronté au dilemme pour passer la barrière, il doit faire des essais.

Commission de Transparence
cliniques dans certaines indications, mais après, elles ne lui serviront à rien puisqu'elles seront restreintes.

C'était pour expliquer l'historique de certains dossiers.

Nous allons parler de trois médicaments qui sont des associations avec soit une céphalosporine ancienne ou nouvelle et un inhibiteur ancien ou nouveau.

[...]

Nous passons au premier, ZERBAXA. C'est une céphalosporine, ceftolozane, qui est semi-nouvelle, et le tazobactam est un inhibiteur de bêta-lactamases qui est ancien.

Sur le plan réglementaire, il demande une extension pour les pneumopathies nosocomiales ventilées. Ils ont déjà eu l'AMM auparavant. Ils avaient également un ASMR bas dans le monde des antibiotiques, sur la même justification que l'avis ZAHIBTA : les études cliniques étaient menées de manière standard, donc il n'y avait pas assez de malades graves et pratiquement pas de germes résistants.

Qu'ont-ils fourni ? Ils ont fourni une belle étude sur le plan méthodologique de non-inferiorité de ZERBAXA versus méropénème, mais avec le méropénème à la dose de 1 g trois fois, donc on aurait pu dire qu'ils mettaient le méropénème un peu à son désavantage, mais dans les pneumonies nosocomiales ventilées cela était un essai de très haute qualité. Ils atteignent la non-inferiorité. C'est hors cible, car il n'y a pas de germe résistant.

Pour joindre au dossier, ils ont donné [censure] une revue de la littérature avec des cases reports dans des situations d'infection à Pseudomonas aeruginosa résistant. L'efficacité observée était entre 50 et 80 %, donc une efficacité correcte compte tenu de l'ambiance méthodologique et de ce que l'on sait des antibiotiques.

Quand la Commission en 2015 avait donné son ASMR V, elle avait demandé une étude post-inscription. Elle est en cours. Il y a 84 patients sur 300 qui ont été inclus. On peut retenir de la lecture de ce rapport que, dans les trois quarts des cas, la prescription est documentée sur un antibiogramme et dans 25 %, c'est probabiliste.

Pour résumer, la qualité de cela n'est pas très loin de zéro, bien sûr. Globalement, pour cette molécule, les données les plus adéquates, c'est la case du milieu qui sont des données de la littérature descriptives observationnelles.

Pour mettre un chapeau commun à ces trois, il faut regarder sur la droite du tableau, la dernière colonne. Les trois antibiotiques ciblent trois situations différentes. En conclusion, je pense que compte tenu des difficultés d'évaluer les antibiotiques dans les situations de résistance, compte tenu du besoin criant des antibiotiques, compte tenu de la qualité acceptable avec des nuances pour ces trois antibiotiques, je pense qu'il est intéressant, sur le plan de la santé publique, de leur donner un quito de leur demande.

En ce qui concerne l'ASMR, nous sommes dans le monde des antibiotiques. Nous sommes dans des antibiotiques qui sont décrits par l'OMS comme indispensables. Nous sommes dans des antibiotiques sélectionnés dans les guidelines de traitement des infections résistantes de

Commission de Transparence
la HAS de l'automne 2019 comme devant être réservés à ces situations de résistance, sur prescription avec avis d'infectiologue et documentation microbiologique.

Si nous voulons favoriser la production et la découverte de ces antibiotiques, je pense que c'est hors norme, mais c'est la règle du jeu dans l'infectiologie actuellement, l'ASMR III me semble justifié.

M. Le P' MERCIER.- J'ai une question au docteur Bru. Sur la multiplication des inhibiteurs de bêta-lactamases, le problème est que la distribution de ces molécules se dissocie de la distribution dans l'organisme de l'antibiotique, notamment au niveau du tube digestif qui est le réservoir du microbiote. N'y a-t-il pas un danger que les inhibiteurs de bêta-lactamases se dissociant de son antibiotique aillent promouvoir d'autres résistances ?

L'utilisation actuelle en pédiatrique de l'amoxicilline est privilégiée sur celle de l'AUGMENTIN, parce que l'inhibiteur de bêta-lactamase va promouvoir des antibiorésistances au niveau du tube digestif. Il y a eu un colloque récent sur l'antibiorésistance mettant en garde, notamment Vincent Jarlier et d'autres, sur l'utilisation larga manu de ces inhibiteurs de bêta-lactamases.

M. le D' BRU.- Oui, tout se passe dans le microbiote digestif. C'est là qu'il y a du trafic de gêne. C'est là que les bactéries passent les gênes. Il y a la capacité de diffusion des gênes de résistance, notamment de tous les éléments mobiles extrêmement peu spécifiques qui peuvent passer d'une bactérie à l'autre. À partir du moment où nous mettons un antibiotique, que ce soit un inhibiteur ou un autre, les bactéries vont se stresser, devenir hypermutées et on va stimuler encore plus la modification des bêta-lactamases et la résistance des bactéries. Les inhibiteurs de bêta-lactamases n'échappent pas à cette règle générale. Je ne sais pas si c'est à sélectionner plus que d'autres, carabènèmes ou d'autres. Je ne sais pas si les conséquences écologiques sont plus graves avec un inhibiteur qu'avec un autre antibiotique. Je ne sais pas. Nous avons tellement d'activités de sélection de résistance et de la stimulation de la résistance bactérienne par tous les antibiotiques. Je ne peux pas répondre à la question : est-ce que les inhibiteurs sélectionnent plus que d'autres molécules à spectre identique ?

L'AUGMENTIN, par rapport à l'amoxicilline, son spectre est plus large. Il ennuie plus de bactéries, vu que le spectre est plus large. C'est clair. Plus le spectre est large, plus la sélection de résistance va être large.

Les nouveaux inhibiteurs n'ont pas d'activité antimicrobienne. L'acide clavulanique-tazobactam ont une petite activité antibactérienne non pas sur tous les nouveaux inhibiteurs. Je ne peux pas répondre à la question. Probablement que Vincent Jarlier a une idée plus claire, mais je n'ai pas vu beaucoup de publications dessus.

M. Le P' MERCIER.- Conceptuellement, dans les infections à germe multirésistant, l'association d'un inhibiteur de bêta-lactamases avec un antibiotique qui n'est plus efficace,
c’est un plus. D’un autre côté, le danger, c’est de sélectionner encore plus des bactéries multirésistantes.

La vaccination dans d’autres conditions est bien meilleure que les antibiotiques qui passent leur temps à sélectionner au niveau du microbiote.

M. le D’ BRU.- Totalement d’accord avec cela. « In bacteria we trust. » Ayez confiance dans les bactéries.

M. Le P’² MERCIER.- Le Ying et le Yang des antibiotiques !

M. le D’ BRU.- Il faut réduire le plus possible leurs utilisations, les limiter à l’absolument nécessaire et, en plus, il faut montrer le moins possible l’antibiotique aux bactéries. Il faut agir avec un raid. On y va et on s’en va tout de suite.

M. le D’ ROSENHEIM.- Pouvez-vous nous confirmer qu’en dehors des formes résistants et sans autres alternatives thérapeutiques, ces antibiotiques ne sont pas utilisables ?

M. le D’ BRU.- Pour l’instant, la doctrine doit rester. Ce que vous voulez entendez et ce qui a été dit auparavant, c’est qu’ils doivent être ciblés sur les bactéries résistantes à tout le reste. Mais on prend par exemple ceftazidime/avibactam, qui a même activité sur les KPC et sur les AmpC, mais aussi sur toutes les BLSE. Quand vous prenez un malade septique grave en réanimation avec risque de bactéries résistantes, on ne parle pas des carbapénémases, mais on se dit : « Il peut qu’il y ait une BLSE. » Sur le malade très grave, on ne met pas piperacilline tazobactam, on met un carbapénème. À condition d’avoir les preuves, il n’est pas exclu d’imaginer que ceftazidime/vibactam puisse être une alternative au carbapénème, pour combler le petit trou de piperacilline tazobactam, que l’on tolère chez les malades qui arrivent septiques mais pas graves, mais que l’on n’admet pas chez les malades de réanimation grave où on a un carbapénème. Ceftazidime avibactam peut avancer non sur son activité à carbapénème mais sur son activité BLSE et AmpC comme une alternative aux carbapénèmes, ce que ne peut pas faire ceftolozane tazobactam et qui n’a pas d’intérêt avec mercapénème mavorbactam. Sur ceftazidime avibactam éventuellement, mais il faudra discuter de tout ça, mais on ne peut pas exclure un positionnement d’alternative aux carbapénèmes chez le malade très grave, pas forcément que sur carbapénémase.

Mme DEGOS, Présidente.- Merci beaucoup.

Nous allons pouvoir avoir la discussion.

Mme LA PRÉSIDENTE.- Merci à Michel Rosenheim, veux-tu faire un commentaire sur ces trois dossiers ?

M. le D’ ROSENHEIM.- D’abord, nous sommes dans le domaine de l’antibiothérapie où nous avons la chance d’avoir des tests in vitro qui permettent de prévoir l’activité du produit. Ce n’est pas vraiment le cas dans d’autres spécialités.
Ce sont des produits indispensables, mais qui doivent être utilisés en dernier recours. Puis, pour aller plus loin, plus qu'un commentaire, personnellement, je pense que leur donner une ASMR III, c'est-à-dire modérée, c'est vraiment ne pas reconnaître l'importance de ces produits dans une population certes très restreinte. Dans d'autres spécialités que je ne citerais pas, si nous avions un produit qui chez des patients à risque très élevé de décès permettait entre 50 et 80 % de guérison (non pas de survie, mais de guérison au sens strict du terme, c'est-à-dire de retour à l'état antérieur), je pense que c'est important et que l'ASMR est plutôt importante que modérée.

Bien entendu, il faut restreindre les prescriptions. Nous aurons un peu de mal dans un avis à entrer dans les méandres des enzymes et différencier en fonction de leurs séries les différents produits. Je pense qu'il faudrait mettre une formulation du genre « nos avis du référent en antibiothérapie », non seulement avis mais également suivi, puisque nous pouvons le prescrire de façon probabiliste dans des situations graves où nous suspectons un germe multirésistant. Dans ces situations-là, il faut également le suivre par le référent en antibiothérapie qui revoit les documents à 48 heures. Sinon nous emmerdons dans un avis particulièrement compliqué. Nous pourrions faire un avis commun, je ne sais pas si c'est possible, pour les trois produits.

Mme GRANDE, pour la HAS.- Nous ne pouvons pas faire un avis commun, c'est réglementaire, mais décision commune.

Mme DEGOS, Présidente.- Ces trois produits sont un peu complémentaires les uns des autres avec une homogénéité. Nous allons être obligés de voter un par un, mais probablement pour un texte assez similaire.

M. le D' ROSENHEIM.- Comme indication en dernier recours.

[...]

Mme GRANDE, pour la HAS.- Pour que votre message de dernier recours soit pris en compte, il faut voter le SMR mis en dans les situations qui ne sont pas du dernier recours.

[...]

Nous passons à ZERBAXA.

Mme, pour la HAS.- Nous avions deux indications déjà examinées par la Commission en 2006, à savoir les infections intra-abdominales compliquées et pyélonéphrites aiguës les infections urinaires, et nous avons une extension d'indication dans les pneumonies nosocomiales, dont les pneumonies acquises sous ventilation mécanique. Le laboratoire demande un SMR important et une ASMR III, mais sa cible actuelle selon les recommandations est aussi en dernier recours dans les infections à Pseudomonas aeruginosa. C'est cohérent avec la revendication du laboratoire.

Mme DEGOS, Présidente.- La firme revendique un intérêt de santé publique.

Mme, pour la HAS.- Oui.

Commission de Transparence

Qui est pour le SMR important ?

(Il est procédé au vote.)

SMR important : unanimité.

L’ASMR revendiquée est III.

M. le D’ ROSENHEIM.- Je souhaiterais voter II, puisque je pense qu’il faut financièrement inciter les firmes dans la recherche de nouveaux antibiotiques. Une des façons de les inciter, c’est en valorisant leur produit. De toute façon, le nombre de patients est très restreint et cela coûte très peu cher à la communauté comparativement à d’autres molécules.

Mme GRANDE, pour la HAS.- On est d’accord que vous votez pour la réévaluation mais également pour l’extension d’indication sur les patients qui ont une pneumonie nosocomiale, dont les pneumonies acquises sous ventilation mécanique, pour que ce soit très clair pour la sténo.

Mme DEGOS, Présidente.- Une fois les remarques de Michel entendues, qui est pour un ASMR II ?

(Il est procédé au vote.)

ASMR II : 2 voix

ASMR III : 14 voix

Intérêt de santé publique : qui est pour ?

(Il est procédé au vote.)

Pour l’ISP : 15 voix

Abstention : 1

SMR en miroir, en dehors des situations qui ont été détaillées dans le vote précédent, qui est pour un SMR important ?

(Il est procédé au vote.)

SMR insuffisant : unanimité.

Mme GRANDE, pour la HAS.- Vous précisez pour cet avis que c’est après avis du référent antibiotique et suivi à 48 heures.

[...]